Publications by authors named "Qusay F Alsalhy"

Vacuum membrane distillation (VMD) has attracted increasing interest for various applications besides seawater desalination. Experimental testing of membrane technologies such as VMD on a pilot or large scale can be laborious and costly. Machine learning techniques can be a valuable tool for predicting membrane performance on such scales.

View Article and Find Full Text PDF

A newly developed water-soluble polymeric nano-additive termed "partially cross-linked nanoparticles graft copolymer (PCLNPG)" has been successfully synthesized and harnessed as a pore former for modifying a polyethersulfone ultrafiltration membrane for dyes removal. The PCLNPG content was varied in the PES polymeric matrix aiming to scrutinize its impact on membrane surface characteristics, morphological structure, and overall performance. Proposed interaction mechanism between methylene blue (MB), methyle orange (MO), and malachite green (MG) dyes with PES membrane was presented as well.

View Article and Find Full Text PDF

Radionuclides, emanating as consequential by-products of nuclear operations, are recognized as a potent source of environmentally deleterious contamination. In light of these concerns, the present investigation has employed unmodified natural pumice within a batch process to effectuate the removal of Cs-137 radionuclides from real liquid radioactive wastes (RLRWs). The discernment of optimal adsorption parameters encompassed a pH level of 5, a pumice dosage of 3.

View Article and Find Full Text PDF

This study presented a detailed investigation into the performance of a plate-frame water gap membrane distillation (WGMD) system for the desalination of untreated real seawater. One approach to improving the performance of WGMD is through the proper selection of cooling plate material, which plays a vital role in enhancing the gap vapor condensation process. Hence, the influence of different cooling plate materials was examined and discussed.

View Article and Find Full Text PDF

Membrane fouling remains a major obstacle to ultrafiltration. Due to their effectiveness and minimal energy demand, membranes have been extensively employed in water treatment. To improve the antifouling property of the PVDF membrane, a composite ultrafiltration membrane was created employing the in-situ embedment approach throughout the phase inversion process and utilizing a new 2D material, MAX phase TiALC.

View Article and Find Full Text PDF

Forward osmosis (FO) is a low-energy treatment process driven by osmosis to induce the separation of water from dissolved solutes/foulants through the membrane in hydraulic pressure absence while retaining all of these materials on the other side. All these advantages make it an alternative process to reduce the disadvantages of traditional desalination processes. However, several critical fundamentals still require more attention for understanding them, most notably the synthesis of novel membranes that offer a support layer with high flux and an active layer with high water permeability and solute rejection from both solutions at the same time, and a novel draw solution which provides low solute flux, high water flux, and easy regeneration.

View Article and Find Full Text PDF

Due to worldwide shortage of water sources and, on the other hand, producing a huge amount of contaminated industrial wastewater, there is an urgent need to provide proper treatment processes such as fast-growing membrane ones. In this study, some nanocomposite nanofilter membranes, as a promising solution for this goal, were fabricated by incorporation of graphene oxide (GO) nanosheets into polyethersulfone (PES) membrane matrix and polyvinylpyrrolidone (PVP) via the method of non-solvent-induced phase separation (NIPS) to dedicate them higher separation performance and a higher antifouling tendency. The produced GO nanosheets and the prepared membranes' structure were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) analysis.

View Article and Find Full Text PDF

In this work, MXene as a hydrophilic 2D nanosheet has been suggested to tailor the polyphenylsulfone (PPSU) flat sheet membrane characteristics via bulk modification. The amount of MXene varied in the PPSU casting solution from 0-1.5 wt.

View Article and Find Full Text PDF

A commercial polydimethylsiloxane (PDMS) membrane was employed to separate the soluble toluene compounds (CH) from an aqueous solution via the pervaporation (PV) process. The performance and the efficacy of the PDMS PV membrane were evaluated through the estimation of the permeation flux and separation factor under various operating parameters. The response surface method (RSM) built in the Minitab-18 software was used for the design of the experiment in this study, and the responses of the permeation flux and the separation factor were analyzed and optimized based on the operating conditions.

View Article and Find Full Text PDF

In this study tungsten oxide and graphene oxide (GO-WO) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), contact angle (CA), water permeation flux, and bovine serum albumin (BSA) rejection. It was found that the modified PPSU membrane fabricated from 0.

View Article and Find Full Text PDF

The separation performance of commercial crosslinked poly (vinyl alcohol) (PVA) membranes (i.e., the new commercial membrane PERVAP™ 4100 H F and standard membrane PERVAP™ 4100) used for the dehydration of two alcohol-water systems (i.

View Article and Find Full Text PDF

The preparation, modification and application of green polymers such as poly-lactic acid (PLA), chitosan (CS), and cellulose acetate (CA) for oily wastewater treatment is summed up in this review. Due to the low environmental pollution, good chemical resistivity, high hydrophobicity, and good capacity for water-oil emulsion separation of the presented polymers, it then highlights the various membrane production methods and their role in producing effective membranes, with a focus on recent advances in improving membrane properties through the addition of various Nano materials. As a result, the hydrophilic/hydrophobic properties that are critical in the oil separation mechanism are highlighted.

View Article and Find Full Text PDF

The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g.

View Article and Find Full Text PDF

A developed polydimethylsiloxane (PDMS) membrane was used to separate soluble benzene compounds (CH) from an aqueous solution via a pervaporation (PV) process. This membrane was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, contact angle (CA), and energy-dispersive spectroscopy (EDS). To evaluate the performance of the membrane, the separation factor and permeation flux were estimated in various operating conditions, including the feed temperature, initial benzene concentration, and feed flow rate.

View Article and Find Full Text PDF

In this research, poly terephthalic acid-co-glycerol-g-maleic anhydride (PTGM) graft co-polymer was used as novel water-soluble pore formers for polyethersulfone (PES) membrane modification. The modified PES membranes were characterized to monitor the effect of PTGM content on their pure water flux, hydrophilicity, porosity, morphological structure, composition, and performance. PTGM and PES/PTGM membranes were characterized by field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle (CA).

View Article and Find Full Text PDF

The vacuum membrane distillation (VMD) process was applied to separate ethanol from a simulated ethanol-water solution using a commercial polytetrafluoroethylene (PTFE) membrane. The presence of ethanol in the ethanol-water solution with a 2 wt.% ethanol concentration at a temperature above 40 °C during the MD process may result in membrane failure due to an increase in the chance of the PTFE membrane wetting at high temperatures.

View Article and Find Full Text PDF

In the current work, a novel nanocomposite membrane for wastewater treatment applications has been synthesized. A hydrophilic nature nanoadditive comprised grafting polyethylenimine (PEI) molecules onto the surfaces of silica nanoparticles (SiO NPs) was synthesized then entrapped within a polyethersulfone polymeric matrix at disparate ratios via the classical phase inversion technique. A series of experimental tools were employed to probe the influence of SiO-PEI on the surface topography and morphological changes, hydrophilicity, porosity, surface chemistry as well as permeation and dyes retention characteristics of the new nanocomposite.

View Article and Find Full Text PDF

In the current work, a Gum, Arabic-modified Graphene (GGA), has been synthesized via a facile green method and employed for the first time as an additive for enhancement of the PPSU ultrafiltration membrane properties. A series of PPSU membranes containing very low (0-0.25) wt.

View Article and Find Full Text PDF

The aim of this work is the optimization of the operating conditions under which MCM-41-mesoporous material can be incorporated into polyethersulfone (PES)/MCM-41 membranes for nanofiltration (NF) applications. MCM-41 mesoporous material mixed matrix PES membranes have the potential to reduce membrane fouling by organic dye molecules. Process optimization and modeling aim to reduce wasted energy while maintaining high flow during the operation to handle the energy efficiency problems membranes often have.

View Article and Find Full Text PDF

Among many contaminants in wastewater, organic phenol compounds presented a major concern to endanger the water resources safety. In the present study, blend nanofiltration (NF) membranes comprising polyphenylsulfone (PPSU) and polyethersulfone (PES) were prepared via the non-induced phase separation and their performance was examined against 4-Nitrophenol (4-NP). The PES ratio in the dope solution was varied from 6 to 9 wt.

View Article and Find Full Text PDF

A novel membrane bioreactor system utilizes Multi-Walled Carbon Nanotubes (MWCNTs) coated polyurethane sponge (PUs), an electrical field, and a nanocomposite membrane has been successfully designed to diminish membrane with fouling caused by activated sludge. The classical phase inversion was harnessed to prepare Zinc Oxide/Polyphenylsulfone (ZnO/PPSU) nanocomposite membranes using 1.5 g of ZnO nanoparticles (NPs).

View Article and Find Full Text PDF

The application of membrane technology to remove pollutant dyes in industrial wastewater is a significant development today. The modification of membranes to improve their properties has been shown to improve the permeation flux and removal efficiency of the membrane. Therefore, in this work, graphene oxide nanoparticles (GO-NPs) were used to modify the polyethersulfone (PES) membrane and prepare mixed matrix membranes (MMMs).

View Article and Find Full Text PDF

The present work has undertaken a meticulous glance on optimizing the performance of an SGMD configuration utilized a porous poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF--HFP) membrane. This was carried out by conducting a systematic framework for investigating and optimizing the pertinent parameters such as sweeping gas flow rate, feed temperature, feed concentration and feed flow rate on the permeate flux. For this purpose, the Taguchi method and design of experiment techniques were harnessed to statistically determine optimum operational conditions.

View Article and Find Full Text PDF

The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb and cadmium Cd ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models.

View Article and Find Full Text PDF

This study investigated the impact of implanting TiO-NPs within a membrane to minimize the influence of long-term operation on the membrane characteristics. Four poly vinyle chloride-titanium oxide (PVC-TiO-NPs) membranes were prepared to create an ultrafiltration membrane (UF) that would effectively treat actual refinery wastewater. The hypothesis of this work was that TiO-NPs would function as a hydrophilic modification of the PVC membrane and excellent self-cleaning material, which in turn would greatly extend the membrane's lifetime.

View Article and Find Full Text PDF