Objective: The aim of this study is to determine the prevalence rates of hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) infections among hemodialysis (HD) patients as well as to identify associated risk factors.
Methodology: A multicenter cross-sectional study involved patients who had been on HD for at least three months. The study was conducted at five HD centers in Damascus, Syria from August 2019 to September 2021.
In this proof-of-concept study, a microfluidic flow injection analysis (FIA) system was developed using multi-walled carbon nanotube-modified screen-printed carbon electrodes (CNTSPEs) that were modified with copper nanoparticles (CuNPs) following the electrodeposition of the diazonium salt of 4-aminothiophenol to form 4-thiophenol-conjugated CuNPs (CuNPs-CNTSPE). Transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the size of CuNPs, morphology and elemental analysis of CuNPs-CNTSPE, respectively. Using electrochemical impedance spectroscopy (EIS), the charge-transfer resistance (R) of CuNPs-CNTSPE was found to be 20-fold lower than that of CNTSPE.
View Article and Find Full Text PDFIn this proof-of-concept study, a novel hybrid nanomaterial-based electrochemical sensor was developed for the simultaneous detection of four DNA bases. For the modification of the working electrode surface, graphene oxide quantum dots (GOQDs) were synthesized using a solvothermal method. GOQDs were then used for the preparation of a hybrid nanomaterial with multi-walled carbon nanotubes (GOQD-MWCNT) using a solvothermal technique for the first time.
View Article and Find Full Text PDFHerein, a novel hybrid bilayer membrane is introduced as a platform to study the aggregation of amyloid-β (Aβ) peptide on surfaces. The first layer was covalently attached to a glassy carbon electrode (GCE) via diazonium electrodeposition, which provided a highly stable template for the hybrid bilayer formation. To prepare the long-chain hybrid bilayer membrane (lcHBLM)-modified electrodes, GCE surfaces were modified with 4-dodecylbenzenediazonium (DDAN) followed by the modification with dihexadecyl phosphate (DHP) as the second layer.
View Article and Find Full Text PDFMicromachines (Basel)
June 2020
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI.
View Article and Find Full Text PDFParkinson's disease (PD) is a long-term degenerative disorder that affects predominately dopaminergic neurons in the substantia nigra, which mainly control movement. Alpha-synuclein (α-syn) is a major constituent of Lewy bodies that are reported to be the most important toxic species in the brain of PD patients. In this critical review, we highlight novel electrochemical biosensors that have been recently developed utilizing aptamers and antibodies in connection with various nanomaterials to study biomarkers related to PD such as α-syn.
View Article and Find Full Text PDFProton nuclear magnetic resonance (NMR) spectra of intact biological samples often show strong contributions from lipids, which overlap with signals of interest from small metabolites. Pioneering work by Diserens et al. demonstrated that the relative differences in diffusivity and relaxation of lipids versus small metabolites could be exploited to suppress lipid signals, in high-resolution magic angle spinning (HR-MAS) NMR spectroscopy.
View Article and Find Full Text PDF