The polymerase chain reaction (PCR)-based genome walking method has been extensively used to isolate unknown flanking sequences, whereas nonspecific products are always inevitable. To resolve these problems, we developed a new strategy to isolate the unknown flanking sequences by combining A-T linker adapter PCR with inverse PCR (I-PCR) or thermal asymmetric interlaced PCR (TAIL-PCR). The result showed that this method can be efficiently achieved with the flanking sequence from the Arabidopsis mutant and papain gene.
View Article and Find Full Text PDFIn this article, we developed a novel PCR method, termed loop-linker PCR, to isolate flanking sequences in transgenic crops. The novelty of this approach is its use of a stem-loop structure to design a loop-linker adapter. The adapter is designed to form a nick site when ligated with restricted DNA.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2012
Pseudomonas aeruginosa is a well-known opportunistic pathogen that can cause acute nosocomial necrotizing pneumonia and genetic disorder cystic fibrosis of lung patients. Pathogenic interactions between P. aeruginosa and hosts are often guided by the secreted virulence determinants that interact with specific host targets.
View Article and Find Full Text PDFA-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products.
View Article and Find Full Text PDF