Publications by authors named "Quoc-Minh Truong"

With increasing urbanization and industrialization, growing amounts of industrial waste, such as red mud (RM), fly ash (FA), blast furnace slag (BFS), steel slag (SS), and sludge, are being produced, exposing substantial threats to the environment and human health. Given that numerous researchers associate with conventional adsorbents, developing and utilizing industrial wastes derived from adsorption technology still has received limited attention. Utilizing this waste contributes to developing alternative materials with superior performance and significantly reduces the volume of solid waste.

View Article and Find Full Text PDF

The COVID-19 pandemic was caused by the SARS-CoV-2 virus, marking one of the most catastrophic global health crises of the 21st century. Throughout this period, widespread use and improper disposal of personal protective equipment (PPE) emerged as a pressing environmental issue, significantly impacting various life forms. During the COVID-19 pandemic, there was a high rate of PEP disposal.

View Article and Find Full Text PDF

Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems.

View Article and Find Full Text PDF

The current study aimed to assess the effectiveness of biochar formed from algae in the removal of Cr(VI) through the process of impregnating brown algae Sargassum hemiphyllum with KHCO. The synthesis of KHCO-activated biochar (KBAB-3), demonstrating remarkable adsorption capabilities for Cr(VI), was accomplished utilizing a mixture of brown algae and KHCO in a mass ratio of 1:3, followed by calcination at a temperature of 700 °C. Based on the empirical evidence, it can be observed that KBAB-3 shown a significant ability to adsorb Cr(VI) within a range of 60-160 mg g across different environmental conditions.

View Article and Find Full Text PDF

Capacitive deionization (CDI) has been considered as an efficient, energy-saving and environmental friendly technology for water treatment. For the practical application of CDI, high-performance electrode materials beyond standard activated carbon should be developed. In this study, biochar derived from brown algae Sargassum hemiphyllum prepared by pyrolysis at 300-700 °C and then used as the CDI electrode to remove Cu(II) from aqueous solutions.

View Article and Find Full Text PDF

In this study, the brown algae Sargassum Hemiphyllum was used as a carbon source for synthesis of magnetic porous biochar via pyrolyzing at high temperature and and doping iron oxide particles (Fe-BAB). Cu (II) species were removed from aqueous solutions using Fe-BAB under various conditions. Fe-BAB demonstrated superior Cu (II) adsorption (105.

View Article and Find Full Text PDF

Biochars derived from three species of algae was synthesized by impregnating the green algae Ulva Ohnoi, red algae Agardhiella subulata, and brown algae Sargassum hemiphyllum with ZnCl chemical activator and employed as a long-term adsorbent for ciprofloxacin (CIP) removal from water. The results revealed that combination of brown algae and ZnCl chemical activator (ZBAB) successfully produced mesoporous biochar with excellent physicochemical characteristics and gave the best CIP adsorption capacity. The ZBAB yielded a high CIP adsorption capacity (190-300 mg g) under various parameter effects (initial pH, temperature and major ions).

View Article and Find Full Text PDF

In this study, biochar derived from brown algal Ascophyllum nodosum was synthesized through hydrothermal carbonization (HTC) coupling with ZnCl chemical activation and applied as a sustainable adsorbent for antibiotic removal from water exemplified by ciprofloxacin (CIP). Various surface analysis techniques such as Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and zeta potential were used to clarify the surface properties of prepared biochars. The adsorption performance of biochars was investigated using batch adsorption experiments with a variety of parameters (initial pH, ionic types, temperature and water matrixes).

View Article and Find Full Text PDF