Drug sensitivity prediction models can aid in personalising cancer therapy, biomarker discovery, and drug design. Such models require survival data from randomised controlled trials which can be time consuming and expensive. In this proof-of-concept study, we demonstrate for the first time that deep learning can link histological patterns in whole slide images (WSIs) of Haematoxylin & Eosin (H&E) stained breast cancer sections with drug sensitivities inferred from cell lines.
View Article and Find Full Text PDFNuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards.
View Article and Find Full Text PDFDiagnostic, prognostic and therapeutic decision-making of cancer in pathology clinics can now be carried out based on analysis of multi-gigapixel tissue images, also known as whole-slide images (WSIs). Recently, deep convolutional neural networks (CNNs) have been proposed to derive unsupervised WSI representations; these are attractive as they rely less on expert annotation which is cumbersome. However, a major trade-off is that higher predictive power generally comes at the cost of interpretability, posing a challenge to their clinical use where transparency in decision-making is generally expected.
View Article and Find Full Text PDFThe recent surge in performance for image analysis of digitised pathology slides can largely be attributed to the advances in deep learning. Deep models can be used to initially localise various structures in the tissue and hence facilitate the extraction of interpretable features for biomarker discovery. However, these models are typically trained for a single task and therefore scale poorly as we wish to adapt the model for an increasing number of different tasks.
View Article and Find Full Text PDFCommun Med (Lond)
September 2022
Background: Computational pathology has seen rapid growth in recent years, driven by advanced deep-learning algorithms. Due to the sheer size and complexity of multi-gigapixel whole-slide images, to the best of our knowledge, there is no open-source software library providing a generic end-to-end API for pathology image analysis using best practices. Most researchers have designed custom pipelines from the bottom up, restricting the development of advanced algorithms to specialist users.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2021
Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
February 2021
Grading for cancer, based upon the degree of cancer differentiation, plays a major role in describing the characteristics and behavior of the cancer and determining treatment plan for patients. The grade is determined by a subjective and qualitative assessment of tissues under microscope, which suffers from high inter- and intra-observer variability among pathologists. Digital pathology offers an alternative means to automate the procedure as well as to improve the accuracy and robustness of cancer grading.
View Article and Find Full Text PDFGeneralized nucleus segmentation techniques can contribute greatly to reducing the time to develop and validate visual biomarkers for new digital pathology datasets. We summarize the results of MoNuSeg 2018 Challenge whose objective was to develop generalizable nuclei segmentation techniques in digital pathology. The challenge was an official satellite event of the MICCAI 2018 conference in which 32 teams with more than 80 participants from geographically diverse institutes participated.
View Article and Find Full Text PDFNuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear morphometry. However, automated nuclear segmentation and classification is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intra-class variability such as the nuclei of tumour cells.
View Article and Find Full Text PDFBreast cancer is the most common invasive cancer in women, affecting more than 10% of women worldwide. Microscopic analysis of a biopsy remains one of the most important methods to diagnose the type of breast cancer. This requires specialized analysis by pathologists, in a task that i) is highly time- and cost-consuming and ii) often leads to nonconsensual results.
View Article and Find Full Text PDFComput Methods Programs Biomed
May 2019
Background And Objective: Segmenting different tissue components in histopathological images is of great importance for analyzing tissues and tumor environments. In recent years, an encoder-decoder family of convolutional neural networks has increasingly adopted to develop automated segmentation tools. While an encoder has been the main focus of most investigations, the role of a decoder so far has not been well studied and understood.
View Article and Find Full Text PDFFront Bioeng Biotechnol
April 2019
High-resolution microscopy images of tissue specimens provide detailed information about the morphology of normal and diseased tissue. Image analysis of tissue morphology can help cancer researchers develop a better understanding of cancer biology. Segmentation of nuclei and classification of tissue images are two common tasks in tissue image analysis.
View Article and Find Full Text PDF