In the context of 'energy shortage', developing a novel energy-based power system is essential for advancing the current power system towards low-carbon solutions. As the usage duration of lithium-ion batteries for energy storage increases, the nonlinear changes in their aging process pose challenges to accurately assess their performance. This paper focuses on the study LiFeO(LFP), used for energy storage, and explores their performance degradation mechanisms.
View Article and Find Full Text PDFNickel-rich cathode materials, owing to their high energy density and low cost, are considered to be one of the cathodes with the most potential in next-generation lithium-ion batteries. Unfortunately, this kind of cathode with highly active surface is easy to react with H O and CO when exposed to ambient air, resulting in the formation of lithium impurities and interfacial phase transition as well as deterioration of the electrochemical properties. In this work, the evolution mechanism of the structure and interface of LiNi Co Mn O during air-exposure is systematically investigated.
View Article and Find Full Text PDF