Perovskite solar cells (PSCs) are emerging photovoltaic devices renowned for their high efficiency and low cost. Efficient and stable PSCs depend on high-quality perovskite films, which are strongly influenced by the excellent nucleation and growth. The choice of solvent is critical for the crystallization behavior of perovskite films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Poly(3-hexylthiophene) (P3HT) has garnered significant attention as a novel hole transport material (HTM). Principally, its cost-effective synthesis, excellent hole conductivity, and stable film morphology make it one of the most promising HTMs for perovskite solar cells (PSCs). However, the efficiency of PSCs employing P3HT remains less than ideal, primarily due to the mismatch of energy levels and insufficient interface contact between P3HT and the perovskite film.
View Article and Find Full Text PDFSuppressing Sn oxidation and rationally controlling the crystallization process of tin-lead perovskite (Sn-Pb PVK) films by suitable bonding methods have emerged as key approaches to achieving efficient and stable Sn-Pb perovskite solar cells (PSCs). Herein, the chelating coordination is performed at the top and bottom interfaces of Sn-Pb PVK films. The chelation strength is stronger toward Sn than Pb by introducing oligomeric proanthocyanidins (OPC) at the bottom interface.
View Article and Find Full Text PDFHigh quality tin-lead perovskite solar cells (Sn─Pb PSCs) can be fabricated via simple solution processing methods. However, the instability of precursor solutions and their narrow usage windows still pose challenges in manufacturing efficient and reproducible Sn─Pb PSCs, hindering the commercialization of PSCs. Fluorine tin (SnF) is widely used as an antioxidant to improve the crystallinity of perovskite.
View Article and Find Full Text PDFIn-sensor and near-sensor computing are becoming the next-generation computing paradigm for high-density and low-power sensory processing. To fulfil a high-density and efficient neuromorphic visual system with fully hierarchical emulation of the retina and visual cortex, emerging multimodal neuromorphic devices for multi-stage processing and a fully hardware-implemented system with versatile image processing functions are still lacking and highly desirable. Here we demonstrate an emerging multimodal-multifunctional resistive random-access memory (RRAM) device array based on modified silk fibroin protein (MSFP), exhibiting both optoelectronic RRAM (ORRAM) mode featured by unique negative and positive photoconductance memory and electrical RRAM (ERRAM) mode featured by analogue resistive switching.
View Article and Find Full Text PDFIn the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability.
View Article and Find Full Text PDFMemristor-based Pavlov associative memory circuit presented today only realizes the simple condition reflex process. The secondary condition reflex endows the simple condition reflex process with more bionic, but it is only demonstrated in design and involves the large number of redundant circuits. A FeO-based memristor exhibits an evolution process from battery-like capacitance (BLC) state to resistive switching (RS) memory as the sweeping increase.
View Article and Find Full Text PDFA memristor with Au/polyimide (PI)/Au structure is prepared by magnetron sputtering to investigate the multiphotoconductance resistive switching (RS) memory behavior. The PI-based memristor presents stable bipolar RS memory and is sensitive to visible light. Four discrete conductance states in both high-resistance state (HRS) and low-resistance state (LRS) are obtained when illuminating by 365, 550, 590, and 780 nm light.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Organic-inorganic hybrid perovskite solar cells (PeSCs) attract much attention in the field of solar cells due to their excellent photovoltaic performance. Many efforts have been devoted to improving their power conversion efficiency (PCE). However, few works focus on simultaneously improving their electrical and optical property.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
The tin oxide (SnO) electron transport layer (ETL) plays a crucial role in perovskite solar cells (PSCs). However, the heterogeneous dispersion of commercial SnO colloidal precursors is far from optimized, resulting in dissatisfied device performance with SnO ETL. Herein, a multifunctional modification material, ammonium citrate (TAC), is used to modify the SnO ETL, bringing four benefits: (1) due to the electrostatic interaction between TAC molecules and SnO colloidal particles, more uniformly dispersed colloidal particles are obtained; (2) the TAC molecules distributed on the surface of SnO provide nucleation sites for the perovskite film growth, promoting the vertical growth of the perovskite crystal; (3) TAC-doped SnO shows higher electron conductivity and better film quality than pristine SnO while offering better energy-level alignment with the perovskite layer; and (4) TAC has functional groups of C═O and N-H containing lone pair electrons, which can passivate the defects on the surface of SnO and perovskite films through chemical bonding and inhibit the device hysteresis.
View Article and Find Full Text PDFQuasi two-dimensional (Q-2D) perovskite cells have attracted much attention due to their excellent stability compared to their 3D counterparts. However, the Q-2D perovskite thin films prepared by the solution method have been confirmed to be a mixture of small- phases and large- phases instead of a pure phase, where the amount and distribution of these phases have a great significance on the performance of Q-2D perovskite solar cells. Here, commercialized 3D perovskite powder was simply added to an ACI perovskite precursor solution to get a uniform and closely connected heterostructure in which the large- phases can work as pathways for charge transfer.
View Article and Find Full Text PDFUnipolar resistive switching (URS) behavior, known as the SET and RESET operating in a single voltage sweep direction, has shown great potential in the simplification of the peripheral circuit. The URS memristor always involves complicated interfacial engineering and structural design. In this work, a reliable URS behavior is realized using a simple Ag/HfO/Pt memristor structure.
View Article and Find Full Text PDFInverted perovskite solar cells (PSCs) exhibit great potential for industrial application thanks to their low complexity and low fabrication temperature. Aiming at commercial applications, it is necessary to comprehensively consider the material consumption and its corresponding electrical performance. Here, a simple strategy has been proposed to obtain inverted PSCs with comprehensive performance, that is, reaching an acceptable electrical performance by reducing the usage of perovskite.
View Article and Find Full Text PDFMinimizing bulk and interfacial nonradiative recombination losses is key to further improving the photovoltaic performance of perovskite solar cells (PSC) but very challenging. Herein, we report a gradient dimensionality engineering to simultaneously passivate the bulk and interface defects of perovskite films. The 2D/3D heterojunction is skillfully constructed by the diffusion of an amphiphilic spacer cation from the interface to the bulk.
View Article and Find Full Text PDFMicromachines (Basel)
October 2021
Although the effect of high temperature on the performance of organic solar cells has been widely investigated, it is inevitably influenced by the associated annealing effect (which usually leads to film morphology change and variation in electrical properties), which makes the discussion more sophisticated. In this study, we simplified the issue and investigated the influence of low temperatures (from room temperature to 77 K) on the photocurrent and internal/external quantum efficiency of a CuPc/C60 based solar cell. We found that besides the charge dynamic process (charge transport), one or more of the exciton dynamic processes, such as exciton diffusion and exciton dissociation, also play a significant role in affecting the photocurrent of organic solar cells at different temperatures.
View Article and Find Full Text PDFThe unique electron spin, transfer, polarization and magnetoelectric coupling characteristics of ABO multiferroic perovskite materials make them promising candidates for application in multifunctional nanoelectronic devices. Reversible ferroelectric polarization, controllable defect concentration and domain wall movement originated from the ABO multiferroic perovskite materials promotes its memristive effect, which further highlights data storage, information processing and neuromorphic computing in diverse artificial intelligence applications. In particular, ion doping, electrode selection, and interface modulation have been demonstrated in ABO-based memristive devices for ultrahigh data storage, ultrafast information processing, and efficient neuromorphic computing.
View Article and Find Full Text PDFOwing to their low cost, easy fabrication and excellent chemical stability properties, tin dioxide (SnO) nanoparticles have been widely employed as an electron transfer material in many high-efficiency perovskite solar cells (PeSCs). However, the adsorbed oxygen species ( O ) on the surface of the SnO layer, which are induced by the annealing process under ambient environment, have always been overlooked. In general, the adsorption of oxygen creates an energy barrier at the SnO/perovskite interface, impairing the efficiency of PeSCs.
View Article and Find Full Text PDFThe continuing increase of the efficiency of perovskite solar cells has pushed the internal quantum efficiency approaching 100%, which means the light-to-carrier and then the following carrier transportation and extraction are no longer limiting factors in photoelectric conversion efficiency of perovskite solar cells. However, the optimal efficiency is still far lower than the Shockley-Queisser efficiency limit, especially for those inverted perovskite solar cells, indicating that a significant fraction of light does not transmit into the active perovskite layer to be absorbed there. Here, a planar inverted perovskite solar cell (ITO/PTAA/perovskite/PCBM/bathocuproine (BCP)/Ag) is chosen as an example, and we show that its external quantum efficiency (EQE) can be significantly improved by simply texturing the poly[bis (4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) layer.
View Article and Find Full Text PDFMemristors possess great application prospects in terabit nonvolatile storage devices, memory-in-logic algorithmic chips and bio-inspired artificial neural network systems. However, "what is the origin state of the memristor?" has remained an unanswered question for half a century. While many applications rely on the memristor, its origin state is becoming a fundamental issue.
View Article and Find Full Text PDFNucleation and crystal growth are key stages for high-quality perovskite films that dominate the performance of perovskite solar cells. However, the position of nuclei in the films and the orientation of the crystal growth have not yet been intendedly controlled during their fabrication. In this study, we developed a method of spin-coating perovskite films on frozen substrates to control the position of the nuclei and the direction of the crystal growth at the same time.
View Article and Find Full Text PDFIn the present work, a new type of porous Ti-based alloy scaffold with high porosity (about 75%) and interconnected pores in the range of 300-1000 µm was fabricated by polymeric foam replication method with TiNbZr powders. This porous scaffold, which is consisted with major β phase Ti and minor α Ti phase, exhibits a compressive strength of 14.9 MPa and an elastic modulus of 0.
View Article and Find Full Text PDFAs a thin cathode buffer layer (CBL) tris-(8-hydroxyquinoline), aluminum (Alq) is successfully introduced into the planar p-i-n perovskite solar cells (PSC) between the PCBM layer and cathode with a device structure of ITO/PEDOT:PSS/CHNHPbI(Cl)/PCBM/Alq/Ag. Due to the as-introduced thin Alq CBL, a high performance planar PSC has been achieved with a fill factor (FF) of 72% and maximum power conversion efficiency (PCE) of 14.22%.
View Article and Find Full Text PDFOrganic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved.
View Article and Find Full Text PDFEgg albumen is modified by hydrogen peroxide with concentrations of 5%, 10%, 15% and 30% at room temperature. Compared with devices without modification, a memory cell of Ag/10% HO-egg albumen/indium tin oxide exhibits obviously enhanced resistive switching memory behavior with a resistance ratio of 10, self-healing switching endurance for 900 cycles and a prolonged retention time for a 10 s @ 200 mV reading voltage after being bent 10 times. The breakage of massive protein chains occurs followed by the recombination of new protein chain networks due to the oxidation of amidogen and the synthesis of disulfide during the hydrogen peroxide modifying egg albumen.
View Article and Find Full Text PDFHere, 2,2'- and 3,3'-bipyridine are introduced for the first time as the core structure to get two new hole transport materials (HTMs), namely F22 and F33. The electron-withdrawing nature of bipyridine lowers the HOMO level of the new compounds and enhances the open-circuit voltage of perovskite solar cells. Especially for F33, the better planarity leads to better conjugation in the whole molecule and the molecular interaction is enhanced.
View Article and Find Full Text PDF