Publications by authors named "Qunji Xue"

Two-dimensional conjugated polymers (2DCPs) are a class of monolayer to multilayer crystalline polymeric materials with conjugated linkages at two-orthogonal directions that promise applications from membranes to electronics. Current interfacial synthesis methods have succeeded in constructing 2DCPs from dynamic covalent chemistry, e.g.

View Article and Find Full Text PDF

sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.

View Article and Find Full Text PDF

As marine equipment advances from shallow to deep-sea environments, the demand for high-performance antifouling materials continues to increase. The lionfish, a species inhabiting both deep-sea and shallow coral reefs, prevents fouling organism adhesion via its smooth, mucus-covered skin, which contains antimicrobial peptides. Inspired by lionfish skin, this work integrates zwitterionic segments with hydration-based fouling-release properties and the furan oxime ester structure with intrinsic antibacterial activity to develop a silicone-based antifouling coating capable of operating from shallow to deep-sea environments.

View Article and Find Full Text PDF
Article Synopsis
  • * The review discusses the wetting, friction, and drag concepts related to slippery surfaces, and explores their mechanisms, showcasing inspiration drawn from certain organisms that naturally exhibit these properties.
  • * It summarizes advancements in three main types of slippery surfaces—air-trapped, liquid-infused, and liquid-like—along with materials, design principles, preparation methods, and outlines challenges and future directions in this field.
View Article and Find Full Text PDF

In this study, an efficient on-site marine oil spillage monitoring probe was developed by fixing oxygen consumption sensors into hydrophobic/oleophilic oil-absorbing porous materials. The impact of thickness and characters of the porous materials, the types of spilled oil, and the presence of salts and vibration in water on the parameters of the obtained signals was investigated. The probe could be used to detect the various representative types of spilled oils including lubricating oil, corn oil, soybean oil, -hexane, petroleum ether and toluene, even in simulated sea water vibrating at different levels, having over 33 times reduced reliable low detection limit (RLDL) in detecting soybean oil in water (from 36.

View Article and Find Full Text PDF

Graphene oxide is an important member of the graphene family which has a wide range of applications. The chemical method, especially the liquid phase method, is one of the most common and important methods for its preparation. However, the complex solution environment not only gives them rich structure, but also brings great challenges for its large-scale industrial synthesis.

View Article and Find Full Text PDF

Viscous oil adherence onto solid surfaces is ubiquitous and has caused intractable fouling problems, impairing the function of solid surfaces in various areas such as optics and separation membranes. Materials with superhydrophilicity and underwater superoleophobicity are very effective in elimination of oil fouling. However, most of them cannot dewet viscous oils and may malfunction without prehydration treatment.

View Article and Find Full Text PDF

Graphene is usually embedded into polymer matrices for the development of thermally conductive composites, preferably forming an interconnected and anisotropic framework. Currently, the directional self-assembly of exfoliated graphene sheets is demonstrated to be the most effective way to synthesize anisotropic graphene frameworks. However, achieving a thermal conductivity enhancement (TCE) over 1500% with per 1 vol% graphene content in polymer matrices remains challenging, due to the high junction thermal resistance between the adjacent graphene sheets within the self-assembled graphene framework.

View Article and Find Full Text PDF

Supra-wetting materials, especially superhydrophobic absorption materials, as an emerging advanced oil-water separation material have attracted extensive concern in the treatment of oil spillage and industrial oily wastewater. However, it is still a challenge to fabricate robust and multifunctional superhydrophobic materials for the multitasking oil-water separation and fast clean-up of the viscous crude oil by an environment-friendly and scalable method. Herein, a solid-solid phase ball-milling strategy without chemical reagent-free modification was proposed to construct heterogeneous superhydrophobic composites by using waste soot as the solid-phase superhydrophobic modifier.

View Article and Find Full Text PDF

Inspired by nature, diverse biomimetic hydrogel actuators are fabricated and become one of the most essential components of bionics research. Usually, the anisotropic structure of a hydrogel actuator is generated at the early fabrication process, only a specific shape transformation behavior can be produced under external stimuli, and thus has limited the development of hydrogel actuators toward the biomimetic shape deformation behavior. Herein, a novel bilayer hydrogel having a thermoresponsive actuating layer and a metal ion-responsive memorizing layer is proposed, therefore, a 2D hydrogel film can be fixed into various 3D shapes via supramolecular metal-ligand coordination, with further realizing programmable 4D shape deformation under the stimulus of temperature.

View Article and Find Full Text PDF

The improper handling of decrypted information can lead to the leakage of confidential data. Thus, there is increasing interest in the development of self-erasing decrypted data. Herein, we report a urease-containing fluorescent hydrogel for multistage information security protection.

View Article and Find Full Text PDF

Inspired by nature, Janus membranes with unidirectional liquid transport (ULT) were developed to be used in the fields of fog collection, moisture-wicking fabrics, demulsification, etc. However, the obtained Janus membranes are often unifunctional, and it is still a great challenge to adjust the ULT of Janus membranes for multifunctional applications. Herein, a scalable, low-cost, and machine-washable Janus membrane was developed by combining the cyclic self-assembly of phytic acid and Fe and a one-side spraying coating of poly(dimethylsiloxane) (PDMS), featuring adjustable ULT upon challenge for multifunctional applications.

View Article and Find Full Text PDF

Strain, as an economic yet controllable approach for structural modulation, frequently plays a vital role in the preparation and performance optimization of two-dimensional nanomaterials (TNMs). Here, utilizing first-principles simulations, the analysis of energetics shows that the biaxial stretching and compressing could facilitate the vertical separation and horizontal sliding in graphene (Gr/Gr), hexagonal boron nitride (-BN/-BN), and molybdenum disulfide (MoS/MoS) bilayers. The quantification of electron redistribution between layers confirmed that the shifts of interlayer charge density (ρ) and its relative values () are responsible for the vertical separation and horizontal sliding facilitated by biaxial strain.

View Article and Find Full Text PDF

With the development of research on superwettability materials, superhydrophobic and superoleophilic materials show superior separation ability in oil-water separation due to their excellent oil-water selectivity. However, due to the super wetting ability of the oil to the material, it is difficult to clean and reuse after adsorbing the oil spill. Therefore, how to realize the complete regeneration of superhydrophobic and superoleophilic materials is still a worldwide problem.

View Article and Find Full Text PDF

Layered double hydroxide (LDH) with NO intercalation was successfully prepared via acidification oscillation and ion exchange. The nano-fillers were incorporated into the resin to prepare anti-corrosion coatings with the thickness of ca. 50 ± 5 μm.

View Article and Find Full Text PDF

Phytic acid (PA), which is a natural and innoxious plant constituent, can strongly adsorb on the metal surface because of its six phosphate groups. In this work, based on the chelating properties of PA and the reaction between PA and hydrolyzable vinyltriethoxysilane (VTES), we developed a novel and facial strategy to generate hierarchical-layer nanospheres on the metal mesh surface and fabricated robust superhydrophobic and superoleophilic miniature metal mesh ships. Because of their superwetting properties, the modified meshes could easily remove and recycle the oil spills from the water surface (>90% collection efficiency), and have high oil/water separation capacity (>96%).

View Article and Find Full Text PDF

Large volume expansion and serious pulverization of silicon are two major challenges for Si-based anode batteries. Herein, a high-mass-load (3.0 g cm) silicon-doped amorphous carbon (Si/a-C) nanocomposite with a hierarchical buffer structure is prepared by one-step magnetron sputtering.

View Article and Find Full Text PDF

The interface between the current collector and active material is the primary interface of charge transfer. Herein, we designed an effective strategy to optimize the interface architecture by depositing molybdenum disulfide on the copper foil surface (Cu-MoS) via magnetron sputtering. The Cu-MoS is directly used as a current collector and supports the LiTiO anode (Cu-MoS-LTO).

View Article and Find Full Text PDF

The superhydrophilic self-cleaning surface can perfectly deal with oil pollution, which cannot be realized by the superhydrophobic surface. This research is designed to study the mechanism of wetting behavior of superhydrophilic coating with different function groups and guide to design a stable self-cleaning surface. We prepare several hydrophilic coatings including nonionic, ionic, and zwitterionic coatings to investigate their self-cleaning performance underwater when they have been polluted by oil in the dry state.

View Article and Find Full Text PDF

The thermodynamic and kinetic stabilities of an O adatom on graphene are critical factors for the formation of oxide defects in graphene, which leads to the breakdown of a graphene protective coating. To systematically understand various behaviors of an O adatom on graphene under the space conditions, the adsorption energies, diffusion paths and barriers, and penetration paths and barriers of the O adatom on pristine and functionalized graphene (e.g.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0js83p5c78urhcpsq3l4fulm3de4h8gi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once