Publications by authors named "Quni Sezhen"

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes.

View Article and Find Full Text PDF

Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery.

View Article and Find Full Text PDF

Chronic nonhealing wounds are serious complications of diabetes with a high morbidity, and they can lead to disability or death. Conventional drug therapy is ineffective for diabetic wound healing because of the complex environment of diabetic wounds and the depth of drug penetration. Here, we developed a self-healing, dual-layer, drug-carrying microneedle (SDDMN) for diabetic wound healing.

View Article and Find Full Text PDF

Background: Immediate implant placement (IIP), which preserves gingival height and papilla shape while simultaneously accelerating the implant treatment period, has become a popular method due to its commendable clinical outcomes. Nonetheless, deploying immediate implants demands specific preconditions concerning the remaining alveolar bone. This poses a challenge to the accuracy of implant surgery.

View Article and Find Full Text PDF

Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability.

View Article and Find Full Text PDF

Nanofibrous scaffolds, which are morphologically/structurally similar to native extracellular matrix, are ideal biomaterials for tissue engineering and regenerative medicine. However, the use of traditional electrospinning techniques to produce three-dimensional (3D) nanofibrous scaffolds with desired structural properties presents difficulty. To address this challenge, we prepared a novel liquid-phase-collected photoinitiated polymerised aerogel 3D scaffold (LPPI-AG) using the thermally induced (nanofiber) self-aggregation method after liquid-phase electrospinning of the hydroxyapatite-doped methacrylated polyvinyl alcohol/methacrylated gelatine solution obtained by photoinitiated polymerisation.

View Article and Find Full Text PDF

The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction.

View Article and Find Full Text PDF