Publications by authors named "Qunfei Tai"

Global profiling of single-cell proteomes can reveal cellular heterogeneity, thus benefiting precision medicine. However, current mass spectrometry (MS)-based single-cell proteomic sample processing still faces technical challenges associated with processing efficiency and protein recovery. Herein, we present an innovative sample processing platform based on a picoliter single-cell reactor (picoSCR) for single-cell proteome profiling, which involves in situ protein immobilization and sample transfer.

View Article and Find Full Text PDF

Efficient protection and precise delivery of biomolecules are of critical importance in the intervention and therapy of various diseases. Although diverse specific marker-functionalized drug carriers have been developed rapidly, current approaches still encounter substantial challenges, including strong immunogenicity, limited target availability, and potential side effects. Herein, we developed a biomimetic exosome-sheathed magnetic mesoporous anchor modified with glucose oxidase (MNPs@mSiO-GOx@EM) to address these challenges and achieve synergistic targeting and starving of tumor cells.

View Article and Find Full Text PDF

Exosome metabolite-based noninvasive liquid biopsy is an emerging research hotspot that tends to substitute current means in clinics. Nanostructure-based mass spectrometry enables continuous exosome isolation and metabolic profiling with superior analysis speed and high efficiency. Herein, we construct a heterogeneous MXene hybrid that possesses ternary binding sites for exosome capture and outstanding matrix performance for metabolite analysis.

View Article and Find Full Text PDF

From metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance.

View Article and Find Full Text PDF

Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for high-throughput proteomic research. Limited by the peak capacity, the separation performance of conventional single-dimensional LC hampers the development of proteomics. Combining different separation modes orthogonally, multidimensional liquid chromatography (MDLC) with high peak capacity was developed to address this challenge.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are crucial in tumor progression and metastasis, but the knowledge of their roles grows slowly at single-cell levels. Characterizing the rarity and fragility of CTCs by nature, highly stable and efficient single-CTC sampling methods are still lacking, which impedes the development of single-CTC analysis. Herein, an improved, capillary-based single-cell sampling (SiCS) method, the so-called bubble-glue single-cell sampling (bubble-glue SiCS), is introduced.

View Article and Find Full Text PDF

Ultra-low-copy number proteins play a crucial role in exploring cellular heterogeneity and the insight of protein biomarkers in a single cell. However, counting ultra-low-copy number target proteins in a single cell remains a grand challenge. Herein, we developed a so-called single-cell picoliter liquid operating technology for counting target proteins in a single cell.

View Article and Find Full Text PDF