Publications by authors named "QunFu Wu"

Thermomyces dupontii harbors two paralogs ( and ) in the gene cluster for the biosynthesis of prenylated indole alkaloids (PIAs) and correponding iron chelators with assigned as one protein containing a CYP like domain fused with a FAD-binding domain-containing oxidoreductase. Genetic manipulation and metabolic profile analysis indicated both and were involved in transforming simple PIAs to their corresponding iron chelators. Moreover, is responsible for bolstering simple PIAs to complex PIAs, and for reinforcing conjugating unsaturated systems in complex PIAs.

View Article and Find Full Text PDF

The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus harbored a rare () gene cluster that was mainly distributed in nematode-trapping fungi.

View Article and Find Full Text PDF

Tibetan pigs (TPs) can adapt to the extreme environments in the Tibetan plateau implicated by their self-genome signals, but little is known about roles of the gut microbiota in the host adaption. Here, we reconstructed 8210 metagenome-assembled genomes from TPs (n = 65) living in high-altitude and low-altitude captive pigs (87 from China-CPs and 200 from Europe-EPs) that were clustered into 1050 species-level genome bins (SGBs) at the threshold of 95% average nucleotide identity. 73.

View Article and Find Full Text PDF

The discovery of biological activities of natural products plays a vital part in drug development. The mechanism by which organisms respond to temperature changes via biosynthesis of natural products remained largely cryptic. A thermophilic fungus under cold stress turned black and accumulated a polyketide metabolite 1 and lipid mass.

View Article and Find Full Text PDF

Our previous study reported that seminaturally occurring arthrocolins A to C with unprecedented carbon skeletons could restore the antifungal activity of fluconazole against fluconazole-resistant Candida albicans. Here, we showed that arthrocolins synergized with fluconazole, reducing the fluconazole minimum and dramatically augmenting the survivals of 293T human cells and nematode Caenorhabditis elegans infected with fluconazole-resistant C. albicans.

View Article and Find Full Text PDF

Tryptophan and its derived metabolites have been assumed to play important roles in the development and survival of organisms. However, the links of tryptophan and its derived metabolites to temperature change remained largely cryptic. Here we presented that a class of prenyl indole alkaloids biosynthesized from tryptophan dramatically accumulated in thermophilic fungus under cold stress, in which lipid droplets were also highly accumulated and whose conidiophores were highly build-up.

View Article and Find Full Text PDF

The predominant nematode-trapping fungus harbors a unique polyketide synthase-prenyltransferase (PKS-PTS) gene cluster responsible for the biosynthesis of sesquiterpenyl epoxy-cyclohexenoids (SECs) that are involved in the regulation of fungal growth, adhesive trap formation, antibacterial activity, and soil colonization. However, the function of one rare gene ( ()) embedded in the cluster has remained cryptic. Here, we constructed two mutants with the disruption of and the overexpression of , respectively, and compared their fungal growth, morphology, resistance to chemical stress, nematicidal activity, transcriptomic and metabolic profiles, and infrastructures, together with binding affinity analysis.

View Article and Find Full Text PDF

Intrauterine adhesions (IUAs) have caused serious harm to women's reproductive health. Although emerging evidence has linked intrauterine microbiome to gynecological diseases, the association of intrauterine microbiome with IUA, remains unknown. We performed metagenome-wide association, metabolomics, and transcriptomics studies on IUA and non-IUA uteri of adult rats to identify IUA-associated microbial species, which affected uterine metabolites and endometrial transcriptions.

View Article and Find Full Text PDF

The gut microbiome has significant effects on healthy aging and aging-related diseases, whether in humans or nonhuman primates. However, little is known about the divergence and convergence of gut microbial diversity between humans and nonhuman primates during aging, which limits their applicability for studying the gut microbiome's role in human health and aging. Here, we performed 16S rRNA gene sequencing analysis for captive rhesus macaques (Macaca mulatta) and compared this data set with other freely available gut microbial data sets containing four human populations (Chinese, Japanese, Italian, and British) and two nonhuman primates (wild lemurs [Lemur catta] and wild chimpanzees [Pan troglodytes]).

View Article and Find Full Text PDF

Sesquiterpenyl epoxy-cyclohexenoids (SECs) that depend on a polyketide synthase-terpenoid synthase (PKS-TPS) pathway are widely distributed in plant pathogenic fungi. However, the biosynthesis and function of the acetylated SECs still remained cryptic. Here, we identified that 00215 273 (273) was responsible for the acetylation of SECs in via the construction of Δ273, in which the acetylated SECs were absent and major antibacterial nonacetylated SECs accumulated.

View Article and Find Full Text PDF

Knowledge about coronaviruses (CoVs) with furin cleavage sites is extremely limited, although these sites mediate the hydrolysis of glycoproteins in plasma membranes required for MERS-CoV or SARS-CoV-2 to enter cells and infect humans. Thus, we have examined the global epidemiology and evolutionary history of SARS-CoV-2 and 248 other CoVs with 86 diversified furin cleavage sites that have been detected in 24 animal hosts in 28 countries since 1954. Besides MERS-CoV and SARS-CoV-2, two of five other CoVs known to infect humans (HCoV-OC43 and HCoV-HKU1) also have furin cleavage sites.

View Article and Find Full Text PDF

Children are less susceptible to coronavirus disease 2019 (COVID-19), and they have manifested lower morbidity and mortality after infection, for which a multitude of mechanisms may be considered. Whether the normal development of the gut-airway microbiome in children is affected by COVID-19 has not been evaluated. Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the upper respiratory tract and the gut microbiomes in nine children.

View Article and Find Full Text PDF

Dietary selection and intake affect the survival and health of mammals under extreme environmental conditions. It has been suggested that dietary composition is a key driver of gut microbiota variation; however, how gut microbiota respond to seasonal dietary changes under extreme natural conditions remains poorly understood. Sequencing plant trnL (UAA) region and 16S rRNA gene analysis were employed to determine dietary composition and gut microbiota in freely grazing yaks on the Tibetan plateau.

View Article and Find Full Text PDF

SARS-CoV-2 is the cause of COVID-19. It infects multiple organs including the respiratory tract and gut. Dynamic changes of regional microbiomes in infected adults are largely unknown.

View Article and Find Full Text PDF

An outbreak of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) began in the city of Wuhan in China and has widely spread worldwide. Currently, it is vital to explore potential intermediate hosts of SARS-CoV-2 to control COVID-19 spread. Therefore, we reinvestigated published data from pangolin lung samples from which SARS-CoV-like CoVs were detected by Liu et al.

View Article and Find Full Text PDF