Publications by authors named "Qun-sheng Ji"

Background: The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents.

Results: Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR) can cooperate to regulate tumor growth and survival, and synergistic growth inhibition has been reported for combined blockade of EGFR and IGF-IR. However, in preclinical models, only a subset of tumors exhibit high sensitivity to this combination, highlighting the potential need for patient selection to optimize clinical efficacy. Herein, we have characterized the molecular basis for cooperative growth inhibition upon dual EGFR and IGF-IR blockade and provide biomarkers that seem to differentiate response.

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP-binding pocket and in the activation loop, which confers specificity for IGF1RK and the highly related insulin receptor (IR) kinase.

View Article and Find Full Text PDF

A series of novel, potent quinolinyl-derived imidazo[1,5-a]pyrazine IGF-IR (IGF-1R) inhibitors--most notably, cis-3-(3-azetidin-1-ylmethylcyclobutyl)-1-(2-phenylquinolin-7-yl)imidazo[1,5-a]pyrazin-8-ylamine (AQIP)--is described. Synthetic details, structure-activity relationships, and in vitro biological activity are reported for the series. Key in vitro and in vivo biological results for AQIP are reported, including: inhibition of ligand-stimulated autophosphorylation of IGF-IR and downstream pathways in 3T3/huIGFIR cells; inhibition of proliferation and induction of DNA fragmentation in human tumor cell lines; a pharmacokinetic profile suitable for once-per-day oral dosing; antitumor activity in a 3T3/huIGFIR xenograft model; and effects on insulin and glucose levels.

View Article and Find Full Text PDF

Insulin-like growth factor-I receptor (IGF-IR) and its ligands, IGF-I and IGF-II, are up-regulated in a variety of human cancers. In tumors, such as colorectal, non-small cell lung, ovarian, and pediatric cancers, which may drive their own growth and survival through autocrine IGF-II expression, the role of IGF-IR is especially critical. Here, we present a novel small-molecule IGF-IR kinase inhibitor, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP), which displayed a cellular IC(50) of 19 nmol/L for inhibition of ligand-dependent autophosphorylation of human IGF-IR with 14-fold cellular selectivity relative to the human insulin receptor.

View Article and Find Full Text PDF

A series of novel 8-amino-1,3-disubstituted-imidazo[1,5-a]pyrazines was designed and synthesized as IGF-IR inhibitors.

View Article and Find Full Text PDF

OBJECTIVE: To investigate the expression of phospholipase C-gamma1(PLC-gamma1) in human fetal tissues. METHODS: Serial sections 5 &mgr;m in thickness were prepared from paraformadehyde-fixed and paraffin-embedded normal human fetal tissues including the cartilage, the cartilage membrane and the muscle tissues. The distribution of PLC-gamma1 expression was examined immunohistochemically in the sections.

View Article and Find Full Text PDF

Phospholipase C-gamma1 (PLC-gamma1) activation has been reported to enhance cell survival during the cellular response to oxidative stress. We studied the role of protein kinase C (PKC) pathways in mediating PLC-gamma1 survival signalling in oxidative stress by using mouse embryonic fibroblasts genetically deficient in PLC-gamma1 (Plcg1(-/-)) and its wild type (Plcg1(+/+)). PLC-gamma1 was activated by H(2)O(2) treatment in a dose- and time-dependent manner.

View Article and Find Full Text PDF

The consequences of heat-induced phospholipase C-gamma1 (PLC-gamma1) phosphorylation are not known. We investigated the role of PLC-gamma1 activation and its downstream targets during the cellular response to heat stress using mouse embryonic fibroblasts genetically deficient in PLC-gamma1 (Plcg1 null MEF) and its wild type (wt MEF) as models. Treatment of wt MEF with heat resulted in temperature- and heating duration-dependent tyrosine phosphorylation of PLC-gamma1.

View Article and Find Full Text PDF