Suitable picking tenderness is an essential prerequisite for manufacturing tea. However, the influence of picking tenderness of fresh tea leaves on the aromatic components is still unclear. In this study, aromatic profiles and chiral odorants in fresh tea leaves and corresponding baked green teas with five levels of tenderness of two representative cultivars were analysed using stir bar sorptive extraction-gas chromatography-mass spectrometry.
View Article and Find Full Text PDFChiral volatile compounds are known to be distributed in teas at various enantiomeric ratios. However, the performance of each enantiomer, including aroma characteristics, aroma intensities, and contribution to the overall flavor of tea, is still unclear. In this study, aroma characteristics and intensities of 38 volatile enantiomers in standards and baked green teas with chestnut-like aroma and clean aroma were evaluated by an efficient sequential headspace-stir bar sorptive extraction (seq-HS-SBSE) approach combined with the enantioselective gas chromatography-olfactometry/mass spectrometry (Es-GC-O/MS) technique.
View Article and Find Full Text PDFKeemun, Assam, Darjeeling and Ceylon black teas are honored as the world's four most famous black teas, and their excellent aroma qualities are well received by people around the world. In this study, aroma components in these four types of teas were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) and gas chromatography-olfactometry (GC-O) technologies. A total of 42 aroma-active compounds were ultimately identified, especially benzeneacetaldehyde, geraniol, (Z)-3-hexen-1-yl hexanoate, trans-β-ionone, cis-linalool oxide (pyranoid), hotrienol, and methyl salicylate presented the strongest aroma strengths with pleasant scents in all tested teas.
View Article and Find Full Text PDFAlthough the enantiomeric distribution of chiral volatiles presents great potential in discrimination of tea cultivars and their geographic origins, this area has received little attention. Thus, we herein aimed to determine the relationships between tea cultivars and the enantiomeric distributions of their chiral volatile constituents. Headspace solid-phase microextraction (HS-SPME) and enantioselective gas chromatography-mass spectrometry (Es-GC-MS) were employed to quantify 15 volatile components in 22 tea cultivars from different locations within China.
View Article and Find Full Text PDFA chestnut-like aroma is widely considered an important indicator of an excellent-quality green tea; however, the key odorants responsible for chestnut-like aroma have never been systematically studied and remain unknown. In this study, the aroma components of green teas and Chinese chestnuts were analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS), and 58 compounds were identified as common aroma components among green teas, boiled Chinese chestnuts, roasted Chinese chestnuts and raw Chinese chestnuts. Subsequently, 17 volatiles, including 3-methylbutanal, (E)-3-penten-2-one, ethylbenzene, heptanal, benzaldehyde, 2-pentylfuran, octanal, benzeneacetaldehyde, (E)-2-octenal, (E,E)-3,5-octadien-2-one, linalool, nonanal, (E)-2-nonenal, decanal, (Z)-hex-3-en-1-yl hexanoate, trans-β-ionone and (E)-nerolidol, were identified as the key odorants responsible for chestnut-like aroma based on the odor activity value (OAV) calculation method.
View Article and Find Full Text PDFVolatile terpenoids play important roles in the formation of tea aroma quality due to their pleasant scents and low odor thresholds. Most volatile terpenoids contain stereogenic centers, which results in various stereo distributions of their enantiomers and diastereoisomers in different types of tea. However, the distribution characteristics of terpenoid enantiomers in teas were still unclear, which poses an obstacle to the scientific understanding of tea aroma.
View Article and Find Full Text PDFBackground: Tea (Camellia sinensis) has long been consumed worldwide for its amazing flavor and aroma. Methyl jasmonate (MeJA), which acts as an effective elicitor among the plant kingdom, could mostly improve the quality of tea aroma by promoting flavor volatiles in tea leaves. Although a variety of volatile secondary metabolites that contribute to aroma quality have been identified, our understanding of the biosynthetic pathways of these compounds has remained largely incomplete.
View Article and Find Full Text PDFEpigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me) present in leaves of Camellia sinensis has many beneficial biological activities for human health. However, EGCG3"Me occurs naturally in tea leaves in extremely limited quantities. Finding an enzyme from C.
View Article and Find Full Text PDF