Publications by authors named "Qun-Ji Xue"

Dual pH- and thermo-responsive polysulfone (PSf) membranes with three-dimensionally interconnected networks are fabricated by introducing poly(acrylic acid-co-N-isopropylacrylamide) (P(AA-NIPAm)) into the membrane surfaces and pore walls during membrane formation via a vapor-liquid induced phase separation (V-LIPS) process. After introducing the copolymers of P(AA-NIPAm), the fabricated membranes exhibit impressive open network pores on the surfaces, meanwhile their cross-sectional structure turns from classical asymmetric finger-like structure into bi-continuous nanopores throughout the whole thickness of membrane, due to high solution viscosity and low mass transfer rate of VIPS process. Furthermore, pure water permeation tests show that the pure water permeation (L) and the molecular weight cutoff (MWCO) of the fabricated PSf/P(AA-NIPAm) membranes increases sharply as the solution pH decreases from 12.

View Article and Find Full Text PDF

In situ pegylated (PEGylated) microporous membranes have been extensively reported using poly(ethylene glycol) (PEG)-based polymers as blending additives. Alternatively, free standing PEGylated polysulfone (PSf) membranes with excellent hydrophilicity and antifouling ability were directly fabricated from polysulfone/poly(ethylene glycol) methyl ether methacrylate (PSf/PEGMA) solutions after in situ cross-linking polymerization without any treatment via vapor induced phase separation (VIPS) process for the first time. The microstructures and performances of the resulting membranes shifted regularly by adjusting exposure time of the liquid film in humid air.

View Article and Find Full Text PDF

Water-soluble and highly stable dispersions of copper nanoparticles were obtained using a biomolecule-assisted synthetic method. Dopamine was utilized as both reducing and capping agent in aqueous medium. The successful formation of DA-stabilized copper particles was demonstrated by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), Zeta potential measurement, and Fourier transform infrared spectroscopy (FT-IR).

View Article and Find Full Text PDF

Aim: To study the effects of {2-[(3-carboxy-1-oxoprogy1)amino]-2-deoxy-D-glucose (COPADG) on cultured human hepatocellular carcinoma cells (HepG2).

Methods: HepG2 cells were cultured in RPMI-1640 medium. Cell proliferation was determined by MTT assay.

View Article and Find Full Text PDF

Aim: To determine whether 2-(3-carboxy-1-oxopropy1) amino-2-deoxy-D-glucose (COPADG), a derivative of D-amino-glucose, inhibited the growth of human esophageal cancer cell line Eca-109.

Methods: Effects of COPADG on Eca-109 cells cultured in RPMI 1640 medium were examined by a tetrazolium-based colorimetric assay (MTT assay).

Results: COPADG inhibited the growth of Eca-109 cells in a dose- and time-dependent manner; the maximum inhibition rate was 83.

View Article and Find Full Text PDF