The synovium, a thin layer of tissue that is adjacent to the joints and secretes synovial fluid, undergoes changes in aging that contribute to intense shoulder pain and other joint diseases. However, the mechanism underlying human synovial aging remains poorly characterized. Here, we generated a comprehensive transcriptomic profile of synovial cells present in the subacromial synovium from young and aged individuals.
View Article and Find Full Text PDFRegeneration across tissues and organs exhibits significant variation throughout the body and undergoes a progressive decline with age. To decode the relationships between aging and regenerative capacity, we conducted a comprehensive single-cell transcriptome analysis of regeneration in eight tissues from young and aged mice. We employed diverse analytical models to study tissue regeneration and unveiled the intricate cellular and molecular mechanisms underlying the attenuated regenerative processes observed in aged tissues.
View Article and Find Full Text PDFAging is a major risk factor contributing to pathophysiological changes in the heart, yet its intrinsic mechanisms have been largely unexplored in primates. In this study, we investigated the hypertrophic and senescence phenotypes in the hearts of aged cynomolgus monkeys as well as the transcriptomic and proteomic landscapes of young and aged primate hearts. SIRT2 was identified as a key protein decreased in aged monkey hearts, and engineered SIRT2 deficiency in human pluripotent stem cell-derived cardiomyocytes recapitulated key senescence features of primate heart aging.
View Article and Find Full Text PDFApolipoprotein E (APOE) is a component of lipoprotein particles that function in the homeostasis of cholesterol and other lipids. Although APOE is genetically associated with human longevity and Alzheimer's disease, its mechanistic role in aging is largely unknown. Here, we used human genetic, stress-induced and physiological cellular aging models to explore APOE-driven processes in stem cell homeostasis and aging.
View Article and Find Full Text PDFAging poses a major risk factor for cardiovascular diseases, the leading cause of death in the aged population. However, the cell type-specific changes underlying cardiac aging are far from being clear. Here, we performed single-nucleus RNA-sequencing analysis of left ventricles from young and aged cynomolgus monkeys to define cell composition changes and transcriptomic alterations across different cell types associated with age.
View Article and Find Full Text PDFRegenerative capacity declines throughout evolution and with age. In this study, we asked whether metabolic programs underlying regenerative capability might be conserved across species, and if so, whether such metabolic drivers might be harnessed to promote tissue repair. To this end, we conducted metabolomic analyses in two vertebrate organ regeneration models: the axolotl limb blastema and antler stem cells.
View Article and Find Full Text PDFCerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.
View Article and Find Full Text PDFBackground: Cardiac hypertrophy is a serious factor underlying heart failure. Although a large number of pathogenic genes have been identified, the underlying molecular mechanisms of cardiac hypertrophy are still poorly understood. MicroRNAs are a class of small non-coding RNAs which regulate their target genes at the post-transcriptional level.
View Article and Find Full Text PDFCardiac hypertrophy is a compensatory response to stress or stimuli, which results in arrhythmia and heart failure. Although multiple molecular mechanisms have been identified, cardiac hypertrophy is still difficult to treat. Pyroptosis is a caspase-1 dependent pro-inflammatory programmed cell death.
View Article and Find Full Text PDFBackground/aims: Arsenic trioxide (ATO) is a known anti-acute promyelocytic leukemia (APL) reagent, whose clinical applications are limited by its serious cardiac toxicity and fatal adverse effects, such as sudden cardiac death resulting from long QT syndrome (LQTS). The mechanisms of cardiac arrhythmia due to ATO exposure still need to be elucidated. Long non-coding RNAs (lncRNAs) are emerging as major regulators of various pathophysiological processes.
View Article and Find Full Text PDFPyroptosis is a caspase-1 dependent programmed cell death, which is involved in the pathologic process of several kinds of cancers. Loss of caspase-1 gene expression has been observed in prostate and gastric cancers. However, the role of pyroptosis in human hepatocellular carcinoma (HCC) remains largely unknown.
View Article and Find Full Text PDFThe aim of this study was to compare the mycorrhizal responsiveness among old and recent Chinese maize genotypes (released from 1950s to 2008) in low- and high-Olsen-P soils and to identify parameters that would indicate the relationships between the mycorrhizal responsiveness and the functional traits related to P uptake of maize. A greenhouse factorial experiment was conducted. The factors were maize genotype [Huangmaya (HMY), Zhongdan 2 (ZD2), Nongda 108 (ND108), and NE15], inoculation with or without arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis), and Olsen-P levels (4, 9, 18, 36, or 60 mg P kg(-1)).
View Article and Find Full Text PDFMaize (Zea mays L.) leaf is the main organ for photosynthesis. The area of leaves (especially the ear-leaf and the two leaves above and below the ear-leaf) plays a vital role in dry matter accumulation and grain yield.
View Article and Find Full Text PDF