Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating.
View Article and Find Full Text PDFIn the eukaryotic cell nucleus, in addition to the genomic information, chromatin organization provides an additional set of information which is more versatile and associates with distinct cell identities. In particular, the marking of the nucleosomes by a choice of specific histone variants can potentially confer distinct functional properties critical for genome function and stability. To understand how this unique marking operates we need to access to the genomic distribution of each variant.
View Article and Find Full Text PDFTumor-infiltrating CD8 + T cells progressively lose functionality and fail to reject tumors. The underlying mechanism and re-programing induced by checkpoint blockers are incompletely understood. We show here that genetic ablation or pharmacological inhibition of histone lysine methyltransferase Suv39h1 delays tumor growth and potentiates tumor rejection by anti-PD-1.
View Article and Find Full Text PDFIn mammals, CENP-A, a histone H3 variant found in the centromeric chromatin, is critical for faithful chromosome segregation and genome integrity maintenance through cell divisions. Specifically, it has dual functions, enabling to define epigenetically the centromere position and providing the foundation for building up the kinetochore. Regulation of its dynamics of synthesis and deposition ensures to propagate proper centromeres on each chromosome across mitosis and meiosis.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
August 2022
Background & Aims: Upon hepatitis B virus (HBV) infection, partially double-stranded viral DNA converts into a covalently closed circular chromatinized episomal structure (cccDNA). This form represents the long-lived genomic reservoir responsible for viral persistence in the infected liver. Although the involvement of host cell DNA damage response in cccDNA formation has been established, this work investigated the yet-to-be-identified histone dynamics on cccDNA during early phases of infection in human hepatocytes.
View Article and Find Full Text PDFThe lack of a consensus DNA sequence defining replication origins in mammals has led researchers to consider chromatin as a means to specify these regions. However, to date, there is no mechanistic understanding of how this could be achieved and maintained given that nucleosome disruption occurs with each fork passage and with transcription. Here, by genome-wide mapping of the de novo deposition of the histone variants H3.
View Article and Find Full Text PDFEffective biomarkers predictive of the response to treatments are key for precision medicine. This study identifies the staining pattern of the centromeric histone 3 variant, CENP-A, as a predictive biomarker of locoregional disease curability by chemoradiation therapy. We compared by imaging the subnuclear distribution of CENP-A in normal and tumoral tissues, and in a retrospective study in biopsies of 62 locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated by chemoradiation therapy.
View Article and Find Full Text PDFThe transcriptional repression of alternative lineage genes is critical for cell fate commitment. Mechanisms by which locus-specific gene silencing is initiated and heritably maintained during cell division are not clearly understood. To study the maintenance of silent gene states, we investigated how the gene is stably repressed in CD8 T cells.
View Article and Find Full Text PDFA loss-of-function mutation in tetratricopeptide repeat domain 7A (TTC7A) is a recently identified cause of human intestinal and immune disorders. However, clues to related underlying molecular dysfunctions remain elusive. It is now shown based on the study of TTC7A-deficient and wild-type cells that TTC7A is an essential nuclear protein.
View Article and Find Full Text PDFDuring development and throughout life, a variety of specialized cells must be generated to ensure the proper function of each tissue and organ. Chromatin plays a key role in determining cellular state, whether totipotent, pluripotent, multipotent, or differentiated. We highlight chromatin dynamics involved in the generation of pluripotent stem cells as well as their influence on cell fate decision and reprogramming.
View Article and Find Full Text PDFDNA replication is a challenge for the faithful transmission of parental information to daughter cells, as both DNA and chromatin organization must be duplicated. Replication stress further complicates the safeguard of epigenome integrity. Here, we investigate the transmission of the histone variants H3.
View Article and Find Full Text PDFNucleic Acids Res
September 2018
During cell division, maintenance of chromatin features from the parental genome requires their proper establishment on its newly synthetized copy. The loss of epigenetic marks within heterochromatin, typically enriched in repetitive elements, endangers genome stability and permits chromosomal rearrangements via recombination. However, how histone modifications associated with heterochromatin are maintained across mitosis remains poorly understood.
View Article and Find Full Text PDFAfter priming, naïve CD8 T lymphocytes establish specific heritable transcription programs that define progression to long-lasting memory cells or to short-lived effector cells. Although lineage specification is critical for protection, it remains unclear how chromatin dynamics contributes to the control of gene expression programs. We explored the role of gene silencing by the histone methyltransferase Suv39h1.
View Article and Find Full Text PDFThe Suv39h lysine methyltransferases, known as key enzymes responsible for histone H3 lysine 9 methylation, are critical for heterochromatin protein 1 enrichment at constitutive heterochromatin. Our recent findings reveal a new role for the Suv39h1 paralog that links it to SUMO pathway function at constitutive heterochromatin.
View Article and Find Full Text PDFThe trimethylation of histone H3 on lysine 9 (H3K9me3) - a mark recognized by HP1 that depends on the Suv39h lysine methyltransferases (KMTs) - has provided a basis for the reader/writer model to explain HP1 accumulation at pericentric heterochromatin in mammals. Here, we identify the Suv39h1 paralog, as a unique enhancer of HP1α sumoylation both in vitro and in vivo. The region responsible for promoting HP1α sumoylation (aa1-167) is distinct from the KMT catalytic domain and mediates binding to Ubc9.
View Article and Find Full Text PDFHP1 enrichment at pericentric heterochromatin is essential for proper chromosome segregation. While H3K9me3 is thought to be a major contributor to HP1 enrichment at pericentric domains, in mouse cells, the SUMO-protease SENP7 is required in addition to H3K9me3. How this is achieved remains elusive.
View Article and Find Full Text PDFAnnu Rev Biochem
January 2015
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity.
View Article and Find Full Text PDFUnderstanding the mechanisms that lead to replication fork blocks (RFB) and the means to bypass them is important given the threat that they represent for genome stability if inappropriately handled. Here, to study this issue in mammals, we use integrated arrays of the LacO and/or TetO as a tractable system to follow in time a process in an individual cell and at a single locus. Importantly, we show that induction of the binding by LacI and TetR proteins, and not the presence of the repeats, is key to form the RFB.
View Article and Find Full Text PDFThe eukaryotic genome is replicated according to a specific spatio-temporal programme. However, little is known about both its molecular control and biological significance. Here, we identify mouse Rif1 as a key player in the regulation of DNA replication timing.
View Article and Find Full Text PDFDuring immune responses, naive CD4+ T cells differentiate into several T helper (TH) cell subsets under the control of lineage-specifying genes. These subsets (TH1, TH2 and TH17 cells and regulatory T cells) secrete distinct cytokines and are involved in protection against different types of infection. Epigenetic mechanisms are involved in the regulation of these developmental programs, and correlations have been drawn between the levels of particular epigenetic marks and the activity or silencing of specifying genes during differentiation.
View Article and Find Full Text PDFFluorescence microscopy has provided a route to qualitatively analyze features of nuclear structures and chromatin domains with increasing resolution. However, it is becoming increasingly important to develop tools for quantitative analysis. Here, we present an automated method to quantitatively determine the enrichment of several endogenous factors, immunostained in pericentric heterochromatin domains in mouse cells.
View Article and Find Full Text PDFSUMOylation promotes targeting of HP1α to pericentric heterochromatin. Here we identify the SUMO-specific protease SENP7 in mouse as a maintenance factor for HP1α accumulation at this location. SENP7 interacts directly with HP1α, localizes at HP1-enriched pericentric domains and can deconjugate SUMOylated HP1α in vivo.
View Article and Find Full Text PDFSingle strand nicks and gaps in DNA have been reported to increase the efficiency of nucleosome loading mediated by chromatin assembly factor 1 (CAF-1). However, on mismatch-containing substrates, these strand discontinuities are utilized by the mismatch repair (MMR) system as loading sites for exonuclease 1, at which degradation of the error-containing strand commences. Because packaging of DNA into chromatin might inhibit MMR, we were interested to learn whether chromatin assembly is differentially regulated on heteroduplex and homoduplex substrates.
View Article and Find Full Text PDF