Publications by authors named "Quirion R"

Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt.

View Article and Find Full Text PDF

The developmental profile of mu (mu) opioid receptor gene expression has been characterized in the embryonic, postnatal and adult rat brain by in situ hybridization histochemistry. By ED12, mu opioid receptor mRNA was detectable in the deep neuroepithelium of the cortical plate. In the developing rat central nervous system (ED13-PD40), transcripts were seen over numerous telencephalic and diencephalic structures, such as the olfactory bulb, caudate-putamen, nucleus accumbens, amygdaloid complex, hippocampal formation, hypothalamus and thalamus.

View Article and Find Full Text PDF

Dopamine is intimately involved in cognitive processes in the brain. Of the several subtypes of dopamine receptors, the possible role of dopamine D1-like receptors in brain functions, especially in learning and memory, has recently generated much interest. However, molecularly the D1-like receptors are comprised of at least two subtypes, namely D-1 and D-5, and it has not been possible to ascertain which of these two receptor classes is responsible for these functions due to the lack of selective ligands.

View Article and Find Full Text PDF

The hippocampus is particularly enriched with neuropeptide tyrosine (NPY) and NPY receptors including the Y1, Y2 and Y5 subtypes. We have previously reported on the enrichment of cultured rat hippocampal neurons in specific [125I][Leu31, Pro34]PYY/BIBP3226-sensitive (Y1) binding sites and Y1 receptor mRNAs [St-Pierre et al. (1998) Br.

View Article and Find Full Text PDF

We have evaluated 3 newly developed neuropeptide Y receptor antagonists in various in vitro binding and bioassays: BIBO3304 (Y1), T4[NPY33-36]4 (Y2), and CGP71683A (Y5). In rat brain homogenates, BIBO3304 competes for the same population of [125I][Leu31,Pro34] peptide YY (PYY) binding sites (75%) as BIBP3226, but with a 10 fold greater affinity (IC50 of 0.2 +/- 0.

View Article and Find Full Text PDF

1. BIIE0246, a newly synthesized non-peptide neuropeptide Y (NPY) Y(2) receptor antagonist, was able to compete with high affinity (8 to 15 nM) for specific [(125)I]PYY(3 - 36) binding sites in HEK293 cells transfected with the rat Y(2) receptor cDNA, and in rat brain and human frontal cortex membrane homogenates. 2.

View Article and Find Full Text PDF

The expression and pharmacological characterization of neuropeptide Y (NPY) receptors of the Y(1) subtype on cultured hippocampal neurons was reported using radioreceptor assays and immunohistochemical approaches (St-Pierre et al., 1998). The present study aimed to establish the presence of NPY Y(1) receptors on cultured hippocampal astrocytes using similar strategies.

View Article and Find Full Text PDF

GR231118 (also known as 1229U91 and GW1229), a purported Y(1) antagonist and Y(4) agonist was radiolabelled using the chloramine T method. [(125)I]-GR231118 binding reached equilibrium within 10 min at room temperature and remained stable for at least 4 h. Saturation binding experiments showed that [(125)I]-GR231118 binds with very high affinity (K(d) of 0.

View Article and Find Full Text PDF

beta-Amyloid (A beta) peptides are most likely involved in the neurodegenerative process occurring in Alzheimer's Disease (AD) and are enriched in senile plaques. The mechanisms of A beta toxicity are not clear but likely involve free radicals and apoptosis. Much interest is currently aiming at developing effective approaches to block A beta toxicity in order to slow down disease progression.

View Article and Find Full Text PDF

A detailed investigation of endogenous acetylcholine (ACh) release from primary embryonic septal cultures is described in this study. Applications of veratridine (25 microM) or increasing extracellular concentrations of K(+) (6-100 mM) induced robust increases of endogenous ACh release ( approximately 500-15,000 fmol/well/10 min). Release stimulated with K(+) (25 mM) was sustainable and did not differ significantly over 180 min.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is widely distributed throughout the central nervous system (CNS) and is one of the most conserved peptides in evolution, suggesting an important role in the regulation of basic physiological functions, including learning and memory. In addition, experimental studies have suggested that NPY, together with its receptors, may have a direct implication in several pathological disorders, including epilepsy/seizure. NPY-like immunoreactivity and NPY receptors have been shown to be present throughout the brain, but is concentrated in the hippocampus.

View Article and Find Full Text PDF

Muscarinic M(2) (AF-DX 384, BIBN-161) and M(4) (PD102807) receptor antagonists were used to investigate the respective roles of these two receptor sub-types in the regulation of acetylcholine release in the rat hippocampus. In vivo dialysis studies revealed that only the muscarinic M(2) receptor antagonists significantly and concentration-dependently facilitate acetylcholine release. The newly developed muscarinic M(4) receptor antagonist was unable to regulate acetylcholine release except at the highest concentration tested.

View Article and Find Full Text PDF

A great number of epidemiological studies have demonstrated that the frequency of the epsilon4 allele of the apolipoprotein E gene (APOE) is markedly higher in sporadic and in familial late onset Alzheimer disease (AD). In the frontal cortex of AD patients, oxidative damage is elevated. We address the hypothesis that the APOE genotype and reactive oxygen-mediated damage are linked in the frontal cortex of AD patients.

View Article and Find Full Text PDF

A number of studies have indicated that neuropeptide Y (NPY) is a central regulator of the gonadotropic axis, and the Y1 receptor was initially suggested to be implicated. As at least five different NPY receptor subtypes have now been characterized, the aim of the present study was to reinvestigate the pharmacological profile of the receptor(s) mediating the inhibitory action of NPY on LH secretion by using a panel of NPY analogs with different selectivity toward the five NPY receptor subtypes. When given intracerebroventricularly (icv) to castrated rats, a bolus injection of native NPY (0.

View Article and Find Full Text PDF

Ascending and descending segments of the rat colon were studied to analyze their contractile responses to neuropeptide Y and related peptides. These responses are (a) completely eliminated by tetrodotoxin (1 microM), (b) reduced to a variable extent (20 to 60%) by atropine (1 microM) and (c) not modified by indomethacin, diphenhydramine or methysergide. The order of potency of agonists for peptides related to neuropeptide Y was as follows: human pancreatic polypeptide = rat pancreatic polypeptide > peptide YY = peptide YY-(3-36) = [Leu31,Pro34]neuropeptide Y > neuropeptide Y-(2-36) > C2-neuropeptide Y = neuropeptide Y > neuropeptide Y-(13-36), with minor differences observed between the two parts of the colon.

View Article and Find Full Text PDF

1. This study examined the effects of the COX inhibitors, ketorolac and ibuprofen, and the NOS inhibitor L-NAME for their potential to both inhibit the development and reverse tolerance to the antinociceptive action of morphine. 2.

View Article and Find Full Text PDF

The insulin-like growth factors-I and -II have neurotrophic properties and act through specific membrane receptors. High levels of binding sites for these growth factors are distributed discretely throughout the brain, being concentrated in the hippocampal formation. Functionally, the insulin-like growth factors, in addition to their growth-promoting actions, are considered to play important roles in normal cell functions, as well as in response to pharmacological or surgical manipulations.

View Article and Find Full Text PDF

Unlabelled: The purpose of this animal investigation was to compare behavioral responses with spinal Fos-like immunoreactivity (FLI) after pre-versus postformalin administration of anesthetic doses of IV ketamine or alfentanil. Preformalin and postformalin injection (1.5% subcutaneously) treatment groups included IV saline control (1.

View Article and Find Full Text PDF

We analysed the expression of dopamine receptor subtypes in the subthalamic nucleus by means of reverse transcriptase-polymerase chain reaction. We also studied, using autoradiography, all pharmacologically characterized dopamine receptors in four subregions of the subthalamic nucleus. For comparison, dopamine receptor subtypes were also evaluated in brain regions where they are more abundant and well characterized.

View Article and Find Full Text PDF

The olfactory bulb is a limbic paleocortex which receives monosynaptic sensory afferents from the olfactory mucosa, and a strong direct cholinergic input from the basal forebrain. This review focuses on the rat olfactory bulb as a suitable model to study cholinergic involvements in cortical processing, during development, adulthood and aging. Anatomical and biochemical data show that cholinergic influences upon the bulbar neuronal network are exerted through several types of target cells and receptors (muscarinic and nicotinic).

View Article and Find Full Text PDF

Chemokines constitute a growing family of structurally and functionally related small (8-10 kDa) proteins associated with inflammatory-cell recruitment in host defence. In addition to their well-established role in the immune system, recent data suggest their involvement in the maintenance of CNS homeostasis, in neuronal patterning during ontogeny and as potential mediators of neuroinflammation, playing an essential role in leukocyte infiltration into the brain. Chemokines and their G protein-coupled receptors are constitutively expressed at low-to-negligible levels in various cell types in the brain.

View Article and Find Full Text PDF

Antisense oligodeoxynucleotides against muscarinic m2 and m4 receptors were used to investigate the role of these receptor subtypes as negative autoreceptors in the regulation of acetylcholine (ACh) release in the rat hippocampus. Following the continuous infusion of antisenses into the third ventricle (1 microgram microliter-1 h-1, 3 days), 3H-AF-DX 384/muscarinic M2-like binding was significantly decreased in the medial septum by the antisense against the m2 receptor whereas M2-like binding in the dorsal striatum was decreased by the antisense against the m4 receptor. In contrast, 3H-pirenzepine/muscarinic M1-like binding was unaffected by either antisense treatment in any of the brain areas investigated.

View Article and Find Full Text PDF

It has been postulated that decreases in plasma levels of dehydroepiandrosterone (DHEA) may contribute to the development of some age-related disorders. Along with neuroprotective and memory enhancing effects, DHEA has been shown to display antioxidant properties. Moreover, oxidative stress is known to cause lipid peroxidation and degenerative changes in the hippocampus, an area involved in memory processes and especially afflicted in Alzheimer's disease (AD).

View Article and Find Full Text PDF

Neuropeptide Y (NPY) has been suggested as an important regulator of CBF. However, except for the presence of Y1 receptors in large cerebral arteries, little is known about its possible sites of action on brain vessels. In this study, we sought to identify the NPY receptors present in the human cerebrovascular bed.

View Article and Find Full Text PDF