Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNST), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses.
View Article and Find Full Text PDFThe arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus.
View Article and Find Full Text PDFThis review addresses key findings on loneliness from the social, neurobiological and clinical fields. From a translational perspective, results from studies in humans and animals are included, with a focus on social interaction, mental and physical illness and the role of oxytocin in loneliness. In terms of social interactions, lonely individuals tend to exhibit a range of abnormal behaviors based on dysfunctional social cognitions that make it difficult for them to form meaningful relationships.
View Article and Find Full Text PDFOxytocin-expressing paraventricular hypothalamic neurons (PVN neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVN neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVN neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet.
View Article and Find Full Text PDFThe hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG).
View Article and Find Full Text PDFPrader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2 mouse, is lacking.
View Article and Find Full Text PDFOxytocin (OT) is a neuropeptide produced by hypothalamic neurons and is known to modulate social behavior among other functions. Several experiments have shown that OT modulates neuronal activity in many brain areas, including sensory cortices. OT neurons thus project axons to various cortical and subcortical structures and activate neuronal subpopulations to increase the signal-to-noise ratio, and in turn, increases the saliency of social stimuli.
View Article and Find Full Text PDFThe avian centrifugal visual system, which projects from the brain to the retina, has been intensively studied in several Neognathous birds that have a distinct isthmo-optic nucleus (ION). However, birds of the order Palaeognathae seem to lack a proper ION in histologically stained brain sections. We had previously reported in the palaeognathous Chilean Tinamou (Nothoprocta perdicaria) that intraocular injections of Cholera Toxin B subunit retrogradely label a considerable number of neurons, which form a diffuse isthmo-optic complex (IOC).
View Article and Find Full Text PDFThe midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals strongly rely on vision for orienting, some species such as echolocating bats have developed alternative strategies, which raises the question how sensory maps are organized in these animals.
View Article and Find Full Text PDFProcessing multimodal sensory information is vital for behaving animals in many contexts. The barn owl, an auditory specialist, is a classic model for studying multisensory integration. In the barn owl, spatial auditory information is conveyed to the optic tectum (TeO) by a direct projection from the external nucleus of the inferior colliculus (ICX).
View Article and Find Full Text PDFMost systematic studies of the avian visual system have focused on Neognathous species, leaving virtually unexplored the Palaeognathae, comprised of the flightless ratites and the South American tinamous. We investigated the visual field, the retinal topography, and the pattern of retinal and centrifugal projections in the Chilean tinamou, a small Palaeognath of the family Tinamidae. The tinamou has a panoramic visual field with a small frontal binocular overlap of 20°.
View Article and Find Full Text PDF