Publications by authors named "Quintus Medley"

The NLR family caspase activation and recruitment domain-containing 4 (NLRC4) inflammasome is a critical cytosolic innate immune machine formed upon the direct sensing of bacterial infection and in response to cell stress during sterile chronic inflammation. Despite its major role in instigating the subsequent host immune response, a more complete understanding of the molecular events in the formation of the NLRC4 inflammasome in humans is lacking. Here we identify Bacillus thailandensis type III secretion system needle protein (Needle) as a potent trigger of the human NLR family apoptosis inhibitory protein (NAIP)/NLRC4 inflammasome complex formation and determine its structural features by cryogenic electron microscopy.

View Article and Find Full Text PDF

Purpose: To evaluate the pharmacology and toxicology of SAF312, a transient receptor potential vanilloid 1 (TRPV1) antagonist.

Methods: TRPV1 expression in human ocular tissues was evaluated with immunohistochemistry. Inhibition of calcium influx in Chinese hamster ovary (CHO) cells expressing human TRPV1 (hTRPV1) and selectivity of SAF312 were assessed by a fluorescent imaging plate reader assay.

View Article and Find Full Text PDF

Purpose: We investigated the aqueous humor proteome and associated plasma proteome in patients with infectious or noninfectious uveitis.

Methods: AH and plasma were obtained from 28 patients with infectious uveitis (IU), 29 patients with noninfectious uveitis (NIU) and 35 healthy controls undergoing cataract surgery. The proteins profile was analyzed by SomaScan technology.

View Article and Find Full Text PDF

Inflammatory signaling induces barrier dysfunction in retinal-pigmented epithelium (RPE) cells and plays a role in the pathology of age-related macular degeneration (AMD). We studied the role of Zn flux from the endoplasmic reticulum (ER) to the cytoplasm via Zip7 during inflammatory signaling in RPE cells. In ARPE-19 cells, Zip7 inhibition reduced impedance loss, FITC-dextran permeability and cytokine induction caused by challenge with IL-1β/TNF-α.

View Article and Find Full Text PDF

ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK.

View Article and Find Full Text PDF

While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation.

View Article and Find Full Text PDF

We wish to report a strategy that targets interleukin-2 inducible T cell kinase (Itk) with covalent inhibitors. Thus far, covalent inhibition of Itk has not been disclosed in the literature. Structure-based drug design was utilized to achieve low nanomolar potency of the disclosed series even at high ATP concentrations.

View Article and Find Full Text PDF

The glucocorticoid-induced TNFR-related (GITR) protein is a coactivating receptor that is constitutively expressed on Treg cells and induced on activated T cells. To better under-stand the role of long-term GITR signaling, we generated a mouse that constitutively expresses GITR ligand (GITRL) on APCs that mimics the physiological distribution of GITRL in vivo. Despite a five-fold expansion of the Treg-cell pool, there is increased activation and depletion of naive T cells in the transgenic (Tg) mice, suggesting that the increased number of Treg cells cannot fully suppress T-cell activation.

View Article and Find Full Text PDF

MRL/MpJ-Fas(lpr/lpr)/J (MRL(lpr)) mice develop lupus-like disease manifestations in an IL-21-dependent manner. IL-21 is a pleiotropic cytokine that can influence the activation, differentiation, and expansion of B and T cell effector subsets. Notably, autoreactive CD4(+) T and B cells spontaneously accumulate in MRL(lpr) mice and mediate disease pathogenesis.

View Article and Find Full Text PDF

Accumulating evidence indicates that IL-1 family members and Th17 cytokines have a pathogenic role in psoriasis. We investigated the regulatory interactions of the IL-1-like IL-36 cytokine family and the Th17 cytokines in the context of skin inflammation. We observed increased gene expression of all three IL-36 cytokines in a Th17-dominant psoriasis-like animal model.

View Article and Find Full Text PDF

IL-22 is made by a unique set of innate and adaptive immune cells, including the recently identified noncytolytic NK, lymphoid tissue-inducer, Th17, and Th22 cells. The direct effects of IL-22 are restricted to nonhematopoietic cells, its receptor expressed on the surface of only epithelial cells and some fibroblasts in various organs, including parenchymal tissue of the gut, lung, skin, and liver. Despite this cellular restriction on IL-22 activity, we demonstrate that IL-22 induces effects on systemic biochemical, cellular, and physiological parameters.

View Article and Find Full Text PDF

The LAR transmembrane tyrosine phosphatase associates with liprin-alpha proteins and colocalizes with liprin-alpha1 at focal adhesions. LAR has been implicated in axon guidance, and liprins are involved in synapse formation and synapse protein trafficking. Several liprin mutants have weaker binding to LAR as assessed by yeast interaction trap assays, and the extents of in vitro and in vivo phosphorylation of these mutants were reduced relative to that of wild-type liprin-alpha1.

View Article and Find Full Text PDF

The Trio guanine nucleotide exchange factor functions in neural development in Caenorhabditis elegans and Drosophila and in the development of neural tissues and skeletal muscle in mouse. The association of Trio with the Lar tyrosine phosphatase led us to study the role of tyrosine phosphorylation in Trio function using focal adhesion kinase (FAK). The Lar-interacting domain of Trio is constitutively tyrosine-phosphorylated when expressed in COS-7 cells and was highly phosphorylated when it was co-transfected with FAK.

View Article and Find Full Text PDF