Publications by authors named "Quinton Winger"

Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights.

View Article and Find Full Text PDF

We previously demonstrated impaired placental nutrient transfer in chorionic somatomammotropin (CSH) RNA interference (RNAi) pregnancies, with glucose transfer being the most impacted. Thus, we hypothesized that despite experimentally elevating maternal glucose, diminished umbilical glucose uptake would persist in CSH RNAi pregnancies, demonstrating the necessity of CSH for adequate placental glucose transfer. Trophectoderm of sheep blastocysts (9 days of gestational age; dGA) were infected with a lentivirus expressing either nontargeting control (CON RNAi; = 5) or CSH-specific shRNA (CSH RNAi; = 7) before transfer into recipient sheep.

View Article and Find Full Text PDF

Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75).

View Article and Find Full Text PDF

While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function.

View Article and Find Full Text PDF

In the ruminant placenta, glucose uptake and transfer are mediated by facilitative glucose transporters SLC2A1 (GLUT1) and SLC2A3 (GLUT3). SLC2A1 is located on the basolateral trophoblast membrane, whereas SLC2A3 is located solely on the maternal-facing, apical trophoblast membrane. While SLC2A3 is less abundant than SLC2A1, SLC2A3 has a five-fold greater affinity and transport capacity.

View Article and Find Full Text PDF

The placenta facilitates the transport of nutrients to the fetus, removal of waste products from the fetus, immune protection of the fetus and functions as an endocrine organ, thereby determining the environment for fetal growth and development. Additionally, the placenta is a highly metabolic organ in itself, utilizing a majority of the oxygen and glucose derived from maternal circulation. Consequently, optimal placental function is required for the offspring to reach its genetic potential in utero.

View Article and Find Full Text PDF

The proper conceptus elongation in ruminants is critical for the successful placentation and establishment of pregnancy. We have previously shown that the trophectoderm-specific knockdown of LIN28A/B in day 9 ovine blastocysts resulted in increased let-7 miRNAs and reduced conceptus elongation at day 16 of gestation. In this current study, by transcriptome analysis of LIN28A knockdown (AKD) or LIN28B knockdown (BKD) trophectoderm (TE), we explored the downstream target genes of the LIN28-let-7 axis and their roles in the placental and fetal development.

View Article and Find Full Text PDF

Deficiency of the placental hormone chorionic somatomammotropin (CSH) can lead to the development of intrauterine growth restriction (IUGR). To gain insight into the physiological consequences of CSH RNA interference (RNAi), the trophectoderm of hatched blastocysts (nine days of gestational age; dGA) was infected with a lentivirus expressing either a scrambled control or CSH-specific shRNA, prior to transfer into synchronized recipient sheep. At 90 dGA, umbilical hemodynamics and fetal measurements were assessed by Doppler ultrasonography.

View Article and Find Full Text PDF

Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident.

View Article and Find Full Text PDF

Chorionic somatomammotropin (CSH) is one of the most abundantly produced placental hormones, yet its exact function remains elusive. Near-term [135 days of gestational age (dGA)], CSH RNA interference (RNAi) results in two distinct phenotypes: ) pregnancies with intrauterine growth restriction (IUGR), and ) pregnancies with normal fetal and placental weights. Here, we report the physiological changes in CSH RNAi pregnancies without IUGR.

View Article and Find Full Text PDF

Chorionic somatomammotropin (CSH) is a placenta-specific hormone associated with fetal growth, and fetal and maternal metabolism in both humans and sheep. We hypothesized that CSH deficiency could impact sheep fetal liver glucose utilization. To generate CSH-deficient pregnancies, day 9 hatched blastocysts were infected with lentiviral particles expressing CSH-specific shRNA (RNAi) or scramble control shRNA (SC) and transferred to synchronized recipients.

View Article and Find Full Text PDF

Reproductive efficiency is critically dependent on embryo survival, establishment of a successful pregnancy and placental development. Recent advances in gene editing technology have enabled investigators to use gene knockdown and knockout approaches to better understand the role of hormone signaling in placental function and fetal growth and development. In this review, an overview of ruminant placentation will be provided, including recent data highlighting the role of histone lysine demethylase 1A and androgen signaling in ruminant placenta and pregnancy.

View Article and Find Full Text PDF

Maternal influenza A viral infections in humans are associated with low birth weight, increased risk of pre-term birth, stillbirth and congenital defects. To examine the effect of maternal influenza virus infection on placental and fetal growth, pregnant C57BL/6 mice were inoculated intranasally with influenza A virus A/CA/07/2009 pandemic H1N1 or phosphate-buffered saline (PBS) at E3.5, E7.

View Article and Find Full Text PDF

Sex is an important biological variable as many physiological as well as disease processes differ between females and males. The fundamental biological distinction between females and males starts with chromosomal sex, and the establishment of XX and XY cells and tissues. Polymerase Chain Reaction (PCR) is a simple and effective method to easily determine chromosomal or genetic sex of cells and tissues.

View Article and Find Full Text PDF

Placental disorders are a major cause of pregnancy loss in humans, and 40-60% of embryos are lost between fertilization and birth. Successful embryo implantation and placental development requires rapid proliferation, invasion, and migration of trophoblast cells. In recent years, microRNAs (miRNAs) have emerged as key regulators of molecular pathways involved in trophoblast function.

View Article and Find Full Text PDF

LIN28 inhibits miRNA maturation which prevents cell differentiation and promotes proliferation. We hypothesized that the LIN28- axis regulates proliferation-associated genes in sheep trophectoderm in vivo. Day 9-hatched sheep blastocysts were incubated with lentiviral particles to deliver shRNA targeting LIN28 specifically to trophectoderm cells.

View Article and Find Full Text PDF

Abnormal placental development is one of the main etiological factors for intrauterine growth restriction (IUGR). Here, we show that LIN28A and LIN28B are significantly lower and lethal-7 () microRNAs (miRNAs) significantly higher in term human IUGR normal placentas. We hypothesize that miRNAs regulate genes with known importance for human placental development [high-mobility group AT-hook 1 (), transcriptional regulator Myc-like (), vascular endothelial growth factor A (), and Wnt family member 1 ()] by targeting the AT-rich interacting domain (ARID)-3B complex.

View Article and Find Full Text PDF

During early placental development, tumor suppressors and oncogenes work synergistically to regulate cell proliferation and differentiation in a restrained manner compared with the uncontrollable growth in cancer. One example of this partnership is the regulation of the oncofetal protein HMGA2 by BRCA1. BRCA1 forms a repressor complex with ZNF350 and CtIP to bind to the promoter of HMGA2, preventing transcription.

View Article and Find Full Text PDF

LIN28B is an RNA-binding protein necessary for maintaining pluripotency in stem cells and plays an important role in trophoblast cell differentiation. LIN28B action on target gene function often involves the Let-7 miRNA family. Previous work in cancer cells revealed that LIN28 through Let-7 miRNA regulates expression of androgen receptor (AR).

View Article and Find Full Text PDF

Early human placental development strongly resembles carcinogenesis in otherwise healthy tissues. The progenitor cells of the placenta, the cytotrophoblast, rapidly proliferate to produce a sufficient number of cells to form an organ that will contribute to fetal development as early as the first trimester. The cytotrophoblast cells begin to differentiate, some towards the fused cells of the syncytiotrophoblast and some towards the highly invasive and migratory extravillous trophoblast.

View Article and Find Full Text PDF

Mammalian ovarian follicular growth is characterized by development of a large fluid filled antrum that separates mural granulosa cells and cumulus cells. Extensive communication between the different cell types is necessary for maturation of a developmentally competent oocyte. Here, we describe an approach for the isolation of cell-secreted exosomes from ovarian follicular fluid, identification of small RNAs (i.

View Article and Find Full Text PDF

Mammalian gamete maturation requires extensive signaling between germ cells and their surrounding somatic cells. In the ovary, theca cells, mural granulosa cells, cumulus cells and the oocyte all secrete factors throughout follicle growth and maturation that are critical for ovulation of a high-quality oocyte with the competence to develop into an embryo. Similarly, maturation of sperm occurs as it transits the epididymis during which epididymal epithelium and sperm exchange secretory factors that are required for sperm to gain motility and fertility.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is a leading cause of neonatal mortality and morbidity. Chorionic somatomammotropin hormone (CSH), a placenta-specific secretory product found at high concentrations in maternal and fetal circulation throughout gestation, is significantly reduced in human and sheep IUGR pregnancies. The objective of this study was to knock down ovine CSH (oCSH) expression in vivo using lentiviral-mediated short-hairpin RNA to test the hypothesis that oCSH deficiency would result in IUGR of near-term fetal lambs.

View Article and Find Full Text PDF

Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome.

View Article and Find Full Text PDF

Age-related decline in fertility is a consequence of low oocyte number and/or low oocyte competence resulting in pregnancy failure. Transforming growth factor (TGF)-β signalling is a well-studied pathway involved in follicular development and ovulation. Recently, small non-coding RNAs, namely microRNAs (miRNAs), have been demonstrated to regulate several members of this pathway; miRNAs are secreted inside small cell-secreted vesicles called exosomes.

View Article and Find Full Text PDF