Publications by authors named "Quinten Vanhellemont"

Understanding the relation between terrestrial microorganisms and edaphic factors in the Antarctic can provide insights into their potential response to environmental changes. Here we examined the composition of bacterial and micro-eukaryotic communities using amplicon sequencing of rRNA genes in 105 soil samples from the Sør Rondane Mountains (East Antarctica), differing in bedrock or substrate type and associated physicochemical conditions. Although the two most widespread taxa (Acidobacteriota and Chlorophyta) were relatively abundant in each sample, multivariate analysis and co-occurrence networks revealed pronounced differences in community structure depending on substrate type.

View Article and Find Full Text PDF

Planet's SuperDove constellation is evaluated for remote sensing of water targets. SuperDoves are small satellites with on board eight band PlanetScope imagers that add four new bands compared to the previous generations of Doves. The Yellow (612 nm) and Red Edge (707 nm) bands are of particular interest to aquatic applications, for example in aiding the retrieval of pigment absorption.

View Article and Find Full Text PDF

The performance of the dark spectrum fitting (DSF) atmospheric correction algorithm is evaluated using matchups between metre- and decametre-scale satellite imagery as processed with ACOLITE and measurements from autonomous PANTHYR hyperspectral radiometer systems deployed in the Adriatic and North Sea. Imagery from the operational land imager (OLI) on Landsat 8, the multispectral instrument (MSI) on Sentinel-2 A and B, and the PlanetScope CubeSat constellation was processed for both sites using a fixed atmospheric path reflectance in a small region of interest around the system's deployment location, using a number of processing settings, including a new sky reflectance correction. The mean absolute relative differences (MARD) between in situ and satellite measured reflectances reach <20% in the Blue and 11% in the Green bands around 490 and 560 nm for the best performing configuration for MSI and OLI.

View Article and Find Full Text PDF

The potential for mapping of turbidity in inland and coastal waters using imagery from the PlanetScope (PS) and RapidEye (RE) constellations is evaluated. With >120 PS and 5 RE satellites in orbit these constellations are able to provide metre scale imagery on a daily basis and could significantly enhance high spatial resolution monitoring of turbidity worldwide. The Dark Spectrum Fitting (DSF) atmospheric correction is adapted to the PS and RE imaging systems to retrieve surface reflectances.

View Article and Find Full Text PDF