Recent studies indicate that greenhouse gas (GHG) emissions from agricultural drainage ditches can be significant on a per-unit area basis, but spatiotemporal investigations are still limited. Additionally, the impact of dredging - a common management in such environments - on ditch GHG emissions is largely unknown. This study presents year-round GHG emissions from nine ditches on a dairy farm in the center of the Netherlands, where each year, approximately half of the ditches are dredged in alternating cycles.
View Article and Find Full Text PDFAquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice.
View Article and Find Full Text PDFAgricultural drainage ditches are subjected to high anthropogenic nitrogen input, leading to eutrophication and greenhouse gas emissions. Nitrate-dependent anaerobic methane oxidation (N-DAMO) could be a promising remediation strategy to remove methane (CH4) and nitrate (NO3-) simultaneously. Therefore, we aimed to evaluate the potential of N-DAMO to remove excess NO3- and decrease CH4 release from agricultural drainage ditches.
View Article and Find Full Text PDF