Publications by authors named "Quinten Deparis"

Many cancer cells share with yeast a preference for fermentation over respiration, which is associated with overactive glucose uptake and breakdown, a phenomenon called the Warburg effect in cancer cells. The yeast mutant shows even more pronounced hyperactive glucose uptake and phosphorylation causing glycolysis to stall at GAPDH, initiation of apoptosis through overactivation of Ras and absence of growth on glucose. The goal of the present work was to use the yeast strain to screen for novel compounds that would preferentially inhibit overactive glucose influx into glycolysis, while maintaining basal glucose catabolism.

View Article and Find Full Text PDF

Whole-genome (WG) transformation (WGT) with DNA from the same or another species has been used to obtain strains with superior traits. Very few examples have been reported in eukaryotes-most apparently involving integration of large fragments of foreign DNA into the host genome. We show that WGT of a haploid acetic acid-sensitive Saccharomyces cerevisiae strain with DNA from a tolerant strain, but not from nontolerant strains, generated many tolerant transformants, some of which were stable upon subculturing under nonselective conditions.

View Article and Find Full Text PDF

Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S.

View Article and Find Full Text PDF
Article Synopsis
  • An opportunistic pathogenic yeast has emerged worldwide over the past decade, posing a significant public health threat due to multidrug resistance (MDR) and frequent hospital outbreaks.
  • Genomic studies have identified five distinct clades of this yeast, which vary in virulence and drug resistance and are tied to different geographic regions.
  • The development of five allele-specific PCR assays allows for quick and affordable identification of these clades, offering a valuable tool for understanding outbreaks and potential drug resistance without needing extensive sequencing.
View Article and Find Full Text PDF

Background: The current shift from a fossil-resource based economy to a more sustainable, bio-based economy requires development of alternative production routes based on utilization of biomass for the many chemicals that are currently produced from petroleum. Muconic acid is an attractive platform chemical for the bio-based economy because it can be converted in chemicals with wide industrial applicability, such as adipic and terephthalic acid, and because its two double bonds offer great versatility for chemical modification.

Results: We have constructed a yeast cell factory converting glucose and xylose into muconic acid without formation of ethanol.

View Article and Find Full Text PDF

tRNAs are encoded by a large gene family, usually with several isogenic tRNAs interacting with the same codon. Mutations in the anticodon region of other tRNAs can overcome specific tRNA deficiencies. Phylogenetic analysis suggests that such mutations have occurred in evolution, but the driving force is unclear.

View Article and Find Full Text PDF

A major hurdle in the production of bioethanol with second-generation feedstocks is the high cost of the enzymes for saccharification of the lignocellulosic biomass into fermentable sugars. Simultaneous saccharification and fermentation with Saccharomyces cerevisiae yeast that secretes a range of lignocellulolytic enzymes might address this problem, ideally leading to consolidated bioprocessing. However, it has been unclear how many enzymes can be secreted simultaneously and what the consequences would be on the C6 and C5 sugar fermentation performance and robustness of the second-generation yeast strain.

View Article and Find Full Text PDF

The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges.

View Article and Find Full Text PDF