The synthetic dye discharge is responsible for nearly one-fifth of the total water pollution from textile industry, which poses both environmental and public health risks. Herein, a solid substrate inoculated with fungi is proposed as an effective and environmentally friendly approach for catalyzing organic dye degradation. was inoculated onto commercially available solid substrates such as sorghum, bran, and husk.
View Article and Find Full Text PDFMicro- and nano-scale plastic particles in the environment result from their direct release and degradation of larger plastic debris. Relative to macro-sized plastics, these small particles are of special concern due to their potential impact on marine, freshwater, and terrestrial systems. While microplastic (MP) pollution has been widely studied in geographic regions globally, many questions remain about its origins.
View Article and Find Full Text PDFThe growing and pervasive presence of plastic pollution has attracted considerable interest in recent years, especially small (< 5 mm) plastic particles known as 'microplastics' (MPs). Their widespread presence may pose a threat to marine organisms globally. Most of the nano and microplastic (N&MP) pollution in marine environments is assumed to originate from land-based sources, but their sources, transport routes, and transformations are uncertain.
View Article and Find Full Text PDFThe increasing prevalence of carbon nanotubes (CNTs) in manufacturing and research environments, together with the potential exposure risks, necessitates development of reliable and accurate monitoring methods for these materials. We examined quantification of CNTs by two distinct methods based on Raman spectroscopy. First, as measured by the Raman peak intensity of aqueous CNT suspensions, and second, by Raman mapping of air filter surfaces onto which CNTs were collected as aerosols or applied as small-area (0.
View Article and Find Full Text PDF