Publications by authors named "Quinn M R Webber"

For prey, movement synchrony represents a potent antipredator strategy. Prey, however, must balance the costs and benefits of using conspecifics to mediate risk. Thus, the emergent patterns of risk-driven sociality depend on variation in space and in the predators and prey themselves.

View Article and Find Full Text PDF

All animals exhibit some combination of spatial and social behaviours. A diversity of interactions occurs between such behaviours, producing emergent phenomena at . Untangling and interrogating these complex, intertwined processes can be vital for identifying the mechanisms, causes and consequences of behavioural variation in animal ecology.

View Article and Find Full Text PDF

Animals interact with nutrient cycles by consuming and depositing nutrients, interactions studied separately in nutritional ecology and zoogeochemistry. Recent theoretical work bridges these disciplines, highlighting that animal-driven nutrient recycling could be crucial in helping animals meet their nutritional needs. When animals exhibit site fidelity, they consistently deposit nutrients, potentially improving vegetation quality.

View Article and Find Full Text PDF

Density dependence is a fundamental ecological process. In particular, animal habitat selection and social behavior often affect fitness in a density-dependent manner. The Ideal Free Distribution (IFD) and niche variation hypothesis (NVH) present distinct predictions associated with Optimal Foraging Theory about how the effect of habitat selection on fitness varies with population density.

View Article and Find Full Text PDF

Migration is a widespread and highly variable trait among animals. Population-level patterns arise from individual-level decisions, including physiological and energetic constraints. Many aspects of migration are influenced by behaviors and strategies employed during periods of stopover, where migrants may encounter variable or unpredictable conditions.

View Article and Find Full Text PDF

In seasonal environments, animals should be adapted to match important life-history traits to when environmental conditions are optimal. Most animal populations therefore reproduce when resource abundance is highest to increase annual reproductive success. When facing variable, and changing, environments animals can display behavioural plasticity to acclimate to changing conditions.

View Article and Find Full Text PDF

Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems.

View Article and Find Full Text PDF

Territories are typically defined as spatially exclusive areas that are defended against conspecifics. Given the spatial nature of territoriality, it is inherently density dependent, but the economics of territoriality also depend on the distribution and abundance of defended resources. Our objectives were to assess the effects of changing population density and food availability on individually based territorial phenotypes.

View Article and Find Full Text PDF

Consistent individual differences in behavior, commonly termed animal personality, are a widespread phenomenon across taxa that have important consequences for fitness, natural selection, and trophic interactions. Animal personality research may prove useful in several conservation contexts, but which contexts remains to be determined. We conducted a structured literature review of 654 studies identified by combining search terms for animal personality and various conservation subfields.

View Article and Find Full Text PDF

When resources are limited, mean fitness is constrained and competition can cause genes and phenotypes to enhance an individual's own fitness while reducing the fitness of their competitors. Negative social effects on fitness have the potential to constrain adaptation, but the interplay between ecological opportunity and social constraints on adaptation remains poorly studied in nature. Here, we tested for evidence of phenotypic social effects on annual fitness (survival and reproductive success) in a long-term study of wild North American red squirrels (Tamiasciurus hudsonicus) under conditions of both resource limitation and super-abundant food resources.

View Article and Find Full Text PDF

Social network analysis is increasingly applied to understand animal groups. However, it is rarely feasible to observe every interaction among all individuals in natural populations. Studies have assessed how missing information affects estimates of individual network positions, but less attention has been paid to metrics that characterize overall network structure such as modularity, clustering coefficient, and density.

View Article and Find Full Text PDF

Scale remains a foundational concept in ecology. Spatial scale, for instance, has become a central consideration in the way we understand landscape ecology and animal space use. Meanwhile, scale-dependent social processes can range from fine-scale interactions to co-occurrence and overlapping home ranges.

View Article and Find Full Text PDF

Host behaviour can affect host-pathogen dynamics and theory predicts that certain individuals disproportionately infect conspecifics during an epidemic. Consistent individual differences in behaviour, or personality, could influence this variation with the most exploratory or sociable individuals most likely to spread pathogens. We quantified exploration and sociability in little brown bats () and then experimentally manipulated exposure to a proxy pathogen (i.

View Article and Find Full Text PDF

Variation in social environment can mitigate risks and rewards associated with occupying a particular patch. We aim to integrate Ideal Free Distribution (IFD) and Geometry of the Selfish Herd (GSH) to address an apparent conflict in their predictions of equal mean fitness between patches (IFD) and declining fitness benefits within a patch (GSH). We tested these hypotheses in a socio-spatial context using individual caribou that were aggregated or disaggregated during calving and varied in their annual reproductive success (ARS).

View Article and Find Full Text PDF

Movement provides a link between individual behavioral ecology and the spatial and temporal variation in an individual's landscape. Individual variation in movement traits is an important axis of animal personality, particularly in the context of foraging ecology. We tested whether individual caribou () displayed plasticity in movement and space-use behavior across a gradient of resource aggregation.

View Article and Find Full Text PDF

Plasma metabolite concentrations can be used to understand nutritional status and foraging behavior across ecological contexts including prehibernation fattening, migration refueling, and variation in foraging habitat quality. Generally, high plasma concentrations of the ketone β-hydroxybutyrate, a product of fat catabolism, indicate fasting, while triglycerides indicate recent feeding and fat accumulation. In recent studies of insectivorous bats, triglyceride concentration increased after feeding as expected, but β-hydroxybutyrate also unexpectedly increased rather than decreased.

View Article and Find Full Text PDF

Animals use a variety of proximate cues to assess habitat quality when resources vary spatiotemporally. Two nonmutually exclusive strategies to assess habitat quality involve either direct assessment of landscape features or observation of social cues from conspecifics as a form of information transfer about forage resources. The conspecific attraction hypothesis proposes that individual space use is dependent on the distribution of conspecifics rather than the location of resource patches, whereas the resource dispersion hypothesis proposes that individual space use and social association are driven by the abundance and distribution of resources.

View Article and Find Full Text PDF

Environmental factors, such as ambient temperature (T) or roost/nest quality, can influence social behaviour of small-bodied endotherms because individuals may aggregate for social thermoregulation when T is low or select the warmest possible sites for roosting. Female temperate bats form maternity colonies in spring to communally raise pups and exploit social thermoregulation. They also select roosts with warm microclimates because low roost temperature (T) delays juvenile development.

View Article and Find Full Text PDF

In many taxa, individual social traits appear to be consistent across time and context, thus meeting the criteria for animal personality. How these differences are maintained in response to changes in population density is unknown, particularly in large mammals, such as ungulates. Using a behavioral reaction norm (BRN) framework, we examined how among- and within-individual variation in social connectedness, measured using social network analyses, change as a function of population density.

View Article and Find Full Text PDF

Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude.

View Article and Find Full Text PDF

Behaviour is the interface between an organism and its environment, and behavioural plasticity is important for organisms to cope with environmental change. Social behaviour is particularly important because sociality is a dynamic process, where environmental variation influences group dynamics and social plasticity can mediate resource acquisition. Heterogeneity in the ecological environment can therefore influence the social environment.

View Article and Find Full Text PDF

Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis.

View Article and Find Full Text PDF

Candidatus Bartonella mayotimonensis was detected in 2010 from an aortic valve sample of a patient with endocarditis from Iowa, the United States of America. The environmental source of the potentially new endocarditis-causing Bartonella remained elusive. We set out to study the prevalence and diversity of bat-associated Bartonella in North America.

View Article and Find Full Text PDF