The mSWI/SNF subunits ARID1A and SMARCA4 are mutated in B cell lymphomas. Now, Barisic et al. and Deng et al.
View Article and Find Full Text PDFIncreasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling.
View Article and Find Full Text PDFClinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies.
View Article and Find Full Text PDFCell-based therapies are emerging as effective agents against cancer and other diseases. As autonomous "living drugs," these therapies lack precise control. Chimeric antigen receptor (CAR) T cells effectively target hematologic malignancies but can proliferate rapidly and cause toxicity.
View Article and Find Full Text PDFHeterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex.
View Article and Find Full Text PDFMolecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously.
View Article and Find Full Text PDFPharmacologic agents that modulate ubiquitin ligase activity to induce protein degradation are a major new class of therapeutic agents, active in a number of hematologic malignancies. However, we currently have a limited understanding of the determinants of activity of these agents and how resistance develops. We developed and used a novel quantitative, targeted mass spectrometry (MS) assay to determine the relative activities, kinetics, and cell-type specificity of thalidomide and 4 analogs, all but 1 of which are in clinical use or clinical trials for hematologic malignancies.
View Article and Find Full Text PDFThe small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys-His (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface.
View Article and Find Full Text PDFLenalidomide mediates the ubiquitination and degradation of Ikaros family zinc finger protein 1 (IKZF1), IKZF3, and casein kinase 1α (CK1α) by facilitating their interaction with cereblon (CRBN), the substrate receptor for the CRL4 E3 ubiquitin ligase. Through this mechanism, lenalidomide is a clinically effective treatment of multiple myeloma and myelodysplastic syndrome (MDS) with deletion of chromosome 5q [del(5q) MDS]. To identify the cellular machinery required for lenalidomide-induced CRL4 activity, we performed a positive selection, genome-scale clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) screen in a lenalidomide-sensitive myeloma cell line.
View Article and Find Full Text PDFHematologic malignancies are driven by combinations of genetic lesions that have been difficult to model in human cells. We used CRISPR/Cas9 genome engineering of primary adult and umbilical cord blood CD34 human hematopoietic stem and progenitor cells (HSPCs), the cells of origin for myeloid pre-malignant and malignant diseases, followed by transplantation into immunodeficient mice to generate genetic models of clonal hematopoiesis and neoplasia. Human hematopoietic cells bearing mutations in combinations of genes, including cohesin complex genes, observed in myeloid malignancies generated immunophenotypically defined neoplastic clones capable of long-term, multi-lineage reconstitution and serial transplantation.
View Article and Find Full Text PDFOne major goal of cancer genome sequencing is to identify key genes and pathways that drive tumor pathogenesis. Although many studies have identified candidate driver genes based on recurrence of mutations in individual genes, subsets of genes with nonrecurrent mutations may also be defined as putative drivers if they affect a single biological pathway. In this fashion, we previously identified Wnt signaling as significantly mutated through large-scale massively parallel DNA sequencing of chronic lymphocytic leukemia (CLL).
View Article and Find Full Text PDFBackground: Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity.
Methods: We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation.
Background: The somatic genetic basis of chronic lymphocytic leukemia, a common and clinically heterogeneous leukemia occurring in adults, remains poorly understood.
Methods: We obtained DNA samples from leukemia cells in 91 patients with chronic lymphocytic leukemia and performed massively parallel sequencing of 88 whole exomes and whole genomes, together with sequencing of matched germline DNA, to characterize the spectrum of somatic mutations in this disease.
Results: Nine genes that are mutated at significant frequencies were identified, including four with established roles in chronic lymphocytic leukemia (TP53 in 15% of patients, ATM in 9%, MYD88 in 10%, and NOTCH1 in 4%) and five with unestablished roles (SF3B1, ZMYM3, MAPK1, FBXW7, and DDX3X).