Mol Clin Oncol
February 2025
Microtubule actin crosslinking factor 1 (MACF1), is a cytoskeletal protein that functions as a crosslinker between microtubules and actin filaments, with early studies expanding the role of this spectraplakin protein to the central nervous system and Wnt signaling. In the early 2000's, genetic alterations of MACF1 were identified in several cancers suggesting that this cytoskeletal crosslinker was involved in tumor development and progression, while preclinical studies provided evidence that MACF1 is a potential diagnostic and prognostic biomarker and therapeutic target in glioblastomas, a central nervous system cancer derived from astrocytes and neural progenitor stem cells. Furthermore, investigations in glioblastomas demonstrated that genetic inhibitory targeting of this spectraplakin protein alone and in combination with DNA damaging agents had synergistic antitumorigenic effects.
View Article and Find Full Text PDFTyrosine kinase inhibitors are a clinically standard treatment option for non-small cell lung cancers (NSCLCs), the leading cause of cancer-related deaths in the US. These targeted agents include first, second and third generation tyrosine kinase inhibitors; however, these lack clinical efficacy in the treatment of NSCLC due to intrinsic and acquired resistance. This resistance may be a result of genetic aberrations in oncogenic signaling mediators of divergent pathways.
View Article and Find Full Text PDFBackground: Microtubule actin crosslinking factor 1 (MACF1) is a spectraplakin cytoskeletal crosslinking protein whose function and role in cancer biology has lacked investigation. Recent studies have identified MACF1 as a novel target in glioblastomas expressed in tissue from tumor patient explants but not normal brain tissue and when silenced has an antitumorigenic impact on these tumors. Radiation as a single agent therapy to treat glioblastomas has been used for decades and has done little to improve survival of individuals diagnosed with this disease.
View Article and Find Full Text PDFInt J Mol Sci
January 2018
Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family.
View Article and Find Full Text PDFGenetic heterogeneity is recognized as a major contributing factor of glioblastoma resistance to clinical treatment modalities and consequently low overall survival rates. This genetic diversity results in variations in protein expression, both intratumorally and between individual glioblastoma patients. In this regard, the spectraplakin protein, microtubule actin cross-linking factor 1 (MACF1), was examined in glioblastoma.
View Article and Find Full Text PDFMicrobial secondary metabolites have emerged as alternative novel drugs for the treatment of human cancers. Violacein, a purple pigment produced by Chromobacterium violaceum, was investigated in the present study for its anti-tumor properties in tumor cell lines. Clinically applicable concentrations of violacein were demonstrated to inhibit the proliferative capacity of tumor cell lines according to a crystal violet proliferation assay.
View Article and Find Full Text PDFFungal metabolites continue to show promise as a viable class of anticancer agents. In the present study, we investigated the efficacy of the fungal metabolite, fusarochromanone (FC101), for its antitumor activities in glioblastomas, which have a median survival of less than two years and a poor clinical response to surgical resection, radiation therapy and chemotherapy. Using clinically applicable doses, we demonstrated that FC101 induced glioblastoma apoptotic cell death via caspase dependent signaling, as indicated by the cleavage of poly(ADP-ribose) polymerase, glioblastoma (PARP).
View Article and Find Full Text PDFThe brain consumes ∼20% of the oxygen utilized in the human body, meaning that brain tumors are vulnerable to paradoxical physiological effects from free radical generation. In the present study, 1'-acetoxychavicol acetate (ACA), a naturally derived antioxidant that inhibits xanthine oxidase, was evaluated for its role as an anti-tumorigenic agent in glioblastomas. The study revealed that ACA inhibited glioblastoma cell proliferation as a consequence of promoting apoptotic cell death by enhancing caspase 3 activity.
View Article and Find Full Text PDFThe unfolded protein endoplasmic reticulum stress response has emerged as a cellular physiological target to invoke tumor cell killing due to its homeostatic and cytoprotective functions. In this study, thapsigargin and tunicamycin, two endoplasmic reticulum stress inducers, were investigated for their efficacy on glioblastomas. We demonstrate that clinically relevant concentrations of thapsigargin and tunicamycin eliminate the glioblastoma cell reproductive capacity as a consequence of cell death.
View Article and Find Full Text PDFInvasion of normal brain tissue by brain tumor cells is a major contributing factor to the recurrence and resistance of clinically diagnosed glioblastomas to therapy (surgery, chemotherapy, radiation). Here, we have assessed the efficacy of the microtubule inhibiting agent epothilone B on glioblastoma cell motility, a prerequisite cellular program of invasive glioblastomas. Using cell migration assays and immunofluorescence techniques we demonstrated that epothilone B abrogated glioblastoma cell motility as a consequence of α-actinin 4 redistristrubiton and the breakdown of cellular structures (leading edge, stress fibers) it is associated with during cell migration.
View Article and Find Full Text PDFInt J Dev Biol
September 2007
The auditory and vestibular endorgans of the inner ear which are essential for the senses of hearing and balance form early during development when the otocyst undergoes a period of rapid growth and compartmentalization. Here we show the spatial and temporal patterns of proliferating cells in the Xenopus laevis inner ear as this organ develops from an otic vesicle at stage 31 until stage 47, an age at which compartmentalization and the initial appearance of sensory structures are evident. Sites of new cell production were identified in specimens at stages 31, 37, 42, 45 and 47 using immunohistochemical methods to detect bromodeoxyuridine (BrdU) incorporation three hours after exposure to this thymidine analogue.
View Article and Find Full Text PDFObject: Radiotherapy is one of the few treatment options available for glioblastoma multiforme (GBM); however, the basis for its overall ineffectiveness in GBM is not fully understood. The present study was designed to explore the nature of the response to ionizing radiation in GBM cells to gain insight into the basis for the general failure of radiotherapy in the treatment of this disease.
Methods: The response to fractionated radiotherapy was examined in GBM cell lines with differing p53 status.
Glioblastomas are intrinsically resistant to conventional radiation therapy. The present study investigated the possibility that the tyrosine kinase inhibitor, imatinib, could enhance radiation sensitivity and influence proliferative recovery after irradiation in glioblastoma cells. Radiosensitivity was evaluated by clonogenic survival; apoptotic cell death was evaluated using flow cytometric analysis; proliferative recovery was monitored based on viable cell number subsequent to radiation-induced growth arrest; activation of p44/42 MAPK was based on phosphorylation of the protein.
View Article and Find Full Text PDFThe formation of the eight independent endorgan compartments (sacculus, utricle, horizontal canal, anterior canal, posterior canal, lagena, amphibian papilla, and basilar papilla) of the Xenopus laevis inner ear is illustrated as the otic vesicle develops into a complex labyrinthine structure. The morphology of transverse sections and whole-mounts of the inner ear was assessed in seven developmental stages (28, 31, 37, 42, 45, 47, 50) using brightfield and laser scanning confocal microscopy. The presence of mechanosensory hair cells in the sensory epithelia was determined by identification of stereociliary bundles in cryosectioned tissue and whole-mounts of the inner ear labeled with the fluorescent F-actin probe Alexa-488 phalloidin.
View Article and Find Full Text PDF