Publications by authors named "Quignard F"

Aerogels can be defined as ultralight materials with a 3D porous structure, similar to their parent wet gels, where the solvent has been replaced by a gas without a collapse of the gel structure, thanks to the drying process used (supercritical CO drying, freeze drying, etc.). (.

View Article and Find Full Text PDF
Article Synopsis
  • A new method was developed to synthesize π-conjugated oligothiophenes with amino-rich groups using palladium-catalyzed C-H arylation, achieving yields between 35-93%.
  • To enhance their fluorescence properties, these compounds were converted into 2,4-diamino-1,3,5-triazine derivatives, yielding 74-98%.
  • Studies revealed a highly emissive molecule suited for use in sensors, with an antagonistic effect improving optical properties in shorter oligothiophene chains.
View Article and Find Full Text PDF

This study explores the influence of different synthesis methods and drying conditions in the preparation of sodium alginate-derivate xerogels presenting interesting disintegrant functionalities. Xerogels containing alginic acid (AA) or calcium alginate (CaA) and a mixture of both, AA/CaA, were isolated using two different drying methods oven and rotary evaporation. AA showed the best wettability behavior, in contrast to the rigid crosslinked CaA structure which showed a limited rate of water penetration.

View Article and Find Full Text PDF

A novel approach for the preparation of sodium alginate foams by ice-templating, followed by freeze-drying was described. Important effects of the preparation parameters on the macroporous structure of the final materials could be evidenced. A functionalization procedure for the preparation of acidified macro/meso-porous foams with high surface area was optimized and the efficiency of one alginic acid foam was demonstrated for the adsorption of a basic dye (methylene blue) from aqueous solution.

View Article and Find Full Text PDF

One-step functionalization of alginate with boronic acid groups allowed spontaneous formation of biocompatible hydrogels under basic conditions without additional complementary molecules or crosslinking agents. The dynamic nature of boronate ester bonds formed with vicinal diols present on alginate pyranose rings provided remarkable self-healing, injectable and multi-stimuli responsive properties to the material.

View Article and Find Full Text PDF

Ethanol organosolv alfa grass lignins were extracted in the presence of sulfuric acid or Lewis acids (Sc(OTf)₃, FeCl₃) as catalysts and subjected to a comprehensive structural characterization by solid state C NMR, GPC, MALDI-TOF, and ASAP-MS/MS. The impact of the severity of the treatment and of the nature of the acid catalyst on the recovered lignin structure was investigated. The lignins isolated at high severity were highly recondensed and partly composed of regular structures composed of furan-like rings.

View Article and Find Full Text PDF

Here we describe a preliminary investigation on the ability of natural keratin to catalyze the nitroaldol (Henry) reaction between aldehydes and nitroalkanes. Both aromatic and heteroaromatic aldehydes bearing strong or moderate electron-withdrawing groups were converted into the corresponding β-nitroalcohol products in both DMSO and in water in the presence of tetrabutylammonium bromide (TBAB) as a phase transfer catalyst. Negligible background reactions (i.

View Article and Find Full Text PDF

Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility.

View Article and Find Full Text PDF

Complexation of alginate models, built of β-d-mannuronic units (M) linked by a 1-4 glycosidic bridge, to Al(3+), Sc(3+), Cr(3+), Fe(3+), Ga(3+), and La(3+) cations was studied by applying the quantum chemical density functional theory (DFT) based method. The binding modes and energies were obtained for complexes with one, two, and three truncated alginate chain(s). In all the hydrated structures a monodentate binding mode is established to be the energetically most favored with shorter M(3+)···O(COO(-)) bonds than M(3+)···O(OH) bonds.

View Article and Find Full Text PDF

Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N₂ adsorption-desorption; and thermogravimetric analysis (TG).

View Article and Find Full Text PDF

In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e.

View Article and Find Full Text PDF

In order to progress in the understanding of mechanical stress generation, the mesoporosity of the cell wall and its changes during maturation of poplar (Populus deltoides × P. nigra) tension wood (TW) and opposite wood (OW) were measured by nitrogen adsorption-desorption. Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the mesoporosity change simultaneously with the deposition of the G-layer in TW.

View Article and Find Full Text PDF

The rheological properties of several ionotropic alginate hydrogels were investigated according to the nature of the divalent cation (Mn(2+), Co(2+), Cu(2+)) and the guluronic fraction of the alginate (HG and LG for "high G-content" and "low G-content"). Six hydrogels (Mn-LG, Mn-HG, Co-LG, Co-HG, Cu-LG and Cu-HG) were synthesized and studied by spectromechanical analyses. On one hand, Cu-HG, Cu-LG and Co-HG behaved as viscoelastic solids: the elastic contribution was higher than the dissipative component in all the frequency range studied (G'>G").

View Article and Find Full Text PDF

The complexation of (1→4) linked α-L-guluronate (G) and β-D-mannuronate (M) disaccharides with Mg(2+), Ca(2+), Sr(2+), Mn(2+), Co(2+), Cu(2+), and Zn(2+) cations have been studied with quantum chemical density functional theory (DFT)-based method. A large number of possible cation-diuronate complexes, with one and two GG or MM disaccharide units and with or without water molecules in the inner coordination shells have been considered. The computed bond distances, cation interaction energies, and molecular orbital composition analysis revealed that the complexation of the transition metal (TM) ions to the disaccharides occurs via the formation of strong coordination-covalent bonds.

View Article and Find Full Text PDF

The morphologies of several ionotropic alginate hydrogels and aerogels were investigated by SAXS according to the nature of the divalent metal cation (Mn(2+), Co(2+), Zn(2+), Cu(2+)) and the guluronic fraction of the alginate. All alginate hydrogel and aerogel samples show isotropic small-angle X-ray scattering. Gelation results from cooperative associations of cations and chain segments and yields different nanostructures, that is, nanofibrillar morphology or multiple junction morphology, according to cation type and eventually mannuronic/guluronic ratio.

View Article and Find Full Text PDF

A hot melt dispersion method was used to prepare new sustained release ibuprofen composite microparticles of a solid lipid at ambient temperature, cetyl alcohol. The dispersion of colloidal silicon dioxide nanoparticles (hydrophilic Aerosil 200 or hydrophobic Aerosil R974) either in the oily phase or in the aqueous phase led to the preparation of large (about 400 μm diameter) surfactant free free-flowing particles. Mapping-scanning electronic microscopy using silicon probe revealed that silicon was in the oily core in all cases.

View Article and Find Full Text PDF

Natural polysaccharides are supports for sensors, absorbents and catalysts. They are also gelling agents in the aqueous phase, due to the high level of dispersion of hydrocolloids. This article focuses on an effective method to prepare dry materials which retain the dispersion of the polymer hydrogel, namely polysaccharide aerogels.

View Article and Find Full Text PDF

Aerogel microspheres of chitosan, an abundant biopolymer obtained from marine crustaceans, have been successfully applied to catalyze the asymmetric aldol reaction in water, providing the products in high yields and with good stereoselectivity (up to 93% ee) and recyclability (up to 4 runs). Yields were favourably affected by additives such as DNP and stearic acid.

View Article and Find Full Text PDF

The impact of immobilization of oxazaborolidines supported on silica via different substituents on the boron and nitrogen atoms is evaluated in the enantioselective reduction of acetophenone. The performances of the homogeneous analog oxazaborolidines and silica supported-ones are compared by varying different parameters. This article deals with the synthesis, characterization and catalytic evaluation of silica-supported oxazaborolidines, their recycling capabilities and regeneration limitations.

View Article and Find Full Text PDF

Macroporous catalyst was obtained by dispersing nanosized gold in the fibrils of the chitosan matrix, followed by CO(2) supercritical drying of the resulting hybrid material. The accessible gold nanoparticles are highly active for carbon-carbon cross coupling reactions.

View Article and Find Full Text PDF

Polysaccharides display most of the properties needed for applications in catalysis, adsorption or remediation. Requisites common to these applications are appropriate surface functions to ensure substrate-material interactions, accessibility of the functional groups, and proper shaping for easy manipulation. Natural polysaccharides are well known as supports for enzymatic catalysts and gelling agents in aqueous phase, due to the high level of dispersion of hydrocolloids.

View Article and Find Full Text PDF

Three different types of photoluminescent hybrid materials containing trivalent lanthanide (Ln(3+) = Eu(3+), Tb(3+)) ions, chitosan, and silica have been prepared with different structural features. The different silica sources lead to diverse microstructures of hybrid materials, with silica being homogeneously dispersed in the chitosan materials (LnChS-H), or forming a core-shell morphology. Postsynthesis treatment is necessary for embedding the luminescent probe.

View Article and Find Full Text PDF

The mechanism for tree orientation in angiosperms is based on the production of high tensile stress on the upper side of the inclined axis. In many species, the stress level is strongly related to the presence of a peculiar layer, called the G-layer, in the fibre cell wall. The structure of the G-layer has recently been described as a hydrogel thanks to N(2) adsorption-desorption isotherms of supercritically dried samples showing a high mesoporosity (pores size from 2-50 nm).

View Article and Find Full Text PDF

Ca-alginate materials were studied by small-angle X-ray scattering (SAXS) at different steps of conversion from gel to aerogel in order to determine the relation between the polymer organization at the nanoscale in the gels and the final dry aerogel. In all cases, i.e.

View Article and Find Full Text PDF