Coumarins exhibit a wide variety of biological effects, including activities in the cardiovascular system and the aim of this study was to evaluate the vascular therapeutic potential of 7-Hydroxicoumarin (7-HC). The vascular effects induced by 7-HC (0.001 μM-300 μM), were investigated by in vitro approaches using isometric tension measurements in rat superior mesenteric arteries and by in silico assays using Ligand-based analysis.
View Article and Find Full Text PDFBackground: The aim of this study was to evaluate the cardiovascular effects of N-phenyl-itaconimide (Imide-1), N-4-methyl-phenyl-itaconimide (Imide-2), N-4-methoxy-phenyl-itaconimide (Imide-3) and N-4-chloro-phenyl-itaconimide (Imide-4), and investigate the mechanisms of action involved in the observed responses.
Methods: The relaxant effect was investigated in rat superior mesenteric arteries by using isometric tension measurements. Additionally, in isolated atria were evaluated the heart rate and force of cardiac contraction and in vivo experiments was evaluated blood pressure and heart rate.
Carvacrol has been described as an agonist/antagonist of different transient receptor potential (TRP) channels and voltage-dependent calcium channels (Cavs). The aim of this study was to evaluate the role of Cav and TRP channels following carvacrol stimulation. Initially, in mesenteric artery rings carvacrol relaxed phenylephrine-induced contractions.
View Article and Find Full Text PDF