Publications by authors named "Quessab Y"

Skyrmion racetrack memories are highly attractive for next-generation data storage technologies. Skyrmions are noncollinear spin textures stabilized by chiral interactions. To achieve a fast-operating memory device, it is critical to move skyrmions at high speeds.

View Article and Find Full Text PDF

Ferrimagnetic thin films are attractive for low-power spintronic applications because of their low magnetization, small angular momentum, and fast spin dynamics. Spin orbit torques (SOT) can be applied with proximal heavy metals that also generate interfacial Dzyaloshinskii-Moriya interactions (DMI), which can stabilize ultrasmall skyrmions and enable fast domain wall motion. Here, the properties of a ferrimagnetic CoGd alloy between two heavy metals to increase the SOT efficiency, while maintaining a significant DMI is studied.

View Article and Find Full Text PDF

Skyrmions can be stabilized in magnetic systems with broken inversion symmetry and chiral interactions, such as Dzyaloshinskii-Moriya interactions (DMI). Further, compensation of magnetic moments in ferrimagnetic materials can significantly reduce magnetic dipolar interactions, which tend to favor large skyrmions. Tuning DMI is essential to control skyrmion properties, with symmetry breaking at interfaces offering the greatest flexibility.

View Article and Find Full Text PDF