Publications by authors named "Quentin Jallerat"

Cardiac two-dimensional tissues were engineered using biomimetic micropatterns based on the fibronectin-rich extracellular matrix (ECM) of the embryonic heart. The goal of this developmentally-inspired, in vitro approach was to identify cell-cell and cell-ECM interactions in the microenvironment of the early 4-chambered vertebrate heart that drive cardiomyocyte organization and alignment. To test this, biomimetic micropatterns based on confocal imaging of fibronectin in embryonic chick myocardium were created and compared to control micropatterns designed with 2 or 20 µm wide fibronectin lines.

View Article and Find Full Text PDF

Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm.

View Article and Find Full Text PDF

During embryonic development, the heart undergoes complex morphogenesis from a liner tube into the four chambers consisting of ventricles, atria and valves. At the same time, the cardiomyocytes compact into a dense, aligned, and highly vascularized myocardium. The extracellular matrix (ECM) is known to play an important role in this process but understanding of the expression and organization remains incomplete.

View Article and Find Full Text PDF

The cell microenvironment plays an important role in many biological processes, including development and disease progression. Key to this is the extracellular matrix (ECM), a complex biopolymer network serving as the primary insoluble signaling network for physical, chemical, and mechanical cues. In vitro, the ability to engineer the ECM at the micro- and nanoscales is a critical tool to systematically interrogate the influence of ECM properties on cellular responses.

View Article and Find Full Text PDF

We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin.

View Article and Find Full Text PDF

Our Patterning on Topography (PoT) printing technique enables fibronectin, laminin and other proteins to be applied to biomaterial surfaces in complex geometries that are inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface. Here, we used this method to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment.

View Article and Find Full Text PDF

The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins.

View Article and Find Full Text PDF