Publications by authors named "Quentin Giai-Gianetto"

Mycobacterium abscessus (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (M. abscessus, M.

View Article and Find Full Text PDF

Damage to the genetic material of the cell poses a universal threat to all forms of life. The DNA damage response is a coordinated cellular response to a DNA break, key to which is the phosphorylation signaling cascade. Identifying which proteins are phosphorylated is therefore crucial to understanding the mechanisms that underlie it.

View Article and Find Full Text PDF

Clostridioides difficile (CD) infections are defined by toxins A (TcdA) and B (TcdB) along with the binary toxin (CDT). The emergence of the 'hypervirulent' (Hv) strain PR 027, along with PR 176 and 181, two decades ago, reshaped CD infection epidemiology in Europe. This study assessed MALDI-TOF mass spectrometry (MALDI-TOF MS) combined with machine learning (ML) and Deep Learning (DL) to identify toxigenic strains (producing TcdA, TcdB with or without CDT) and Hv strains.

View Article and Find Full Text PDF

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system.

View Article and Find Full Text PDF

Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored.

View Article and Find Full Text PDF

Hepatic steatosis is the result of imbalanced nutrient delivery and metabolism in the liver and is the first hallmark of Metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is the most common chronic liver disease and involves the accumulation of excess lipids in hepatocytes, inflammation, and cancer. Mitochondria play central roles in liver metabolism yet the specific mitochondrial functions causally linked to MASLD remain unclear.

View Article and Find Full Text PDF

Tunnelling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions to span lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy, and optical tweezer-based approaches, we demonstrate that TNTs formed through the outward extension of actin achieve distances greater than the mean length of filopodia and that branched Arp2/3-dependent pathways attenuate the extent to which actin polymerizes in nanotubes, thus limiting their occurrence.

View Article and Find Full Text PDF

In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of stationary phase cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have recently shown that a ΔrpoS mutation decreases the magnesium content and expression level of the housekeeping Mg2+-transporter CorA in stationary phase Salmonella.

View Article and Find Full Text PDF
Article Synopsis
  • Bordetella pertussis, the bacteria causing whooping cough, continues to circulate globally despite vaccines, and this study focuses on differences between two fimbrial serotypes, FIM2 and FIM3.
  • The research involved analyzing the microbial traits and protein profiles of 19 bacterial isolates, revealing that FIM2 produces more fimbriae and biofilm but is less effective at agglutination and survival in cord blood than FIM3.
  • Findings indicate that distinct fimbrial serotypes and their clades are linked to significant differences in virulence factors, which could affect disease spread and prevention strategies.
View Article and Find Full Text PDF

In human cells, de novo purine nucleotide biosynthesis is known to be regulated through the formation of a metabolon called purinosome. Here, we employed a bacterial two-hybrid approach to characterize the protein-protein interactions network among the corresponding enzymes of Escherichia coli. Our study revealed a dense network of binary interactions that connect most purine nucleotide biosynthesis enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis is a serious condition caused by infection that can lead to problems in organs, including making muscles weaker in very sick patients.
  • Researchers studied muscle samples from patients with sepsis and compared them to other sick groups to understand the changes happening in the muscles during septic shock.
  • They found that certain important processes in the body's energy production and fat breakdown were less active in sepsis patients, which might be causing muscle issues.
View Article and Find Full Text PDF

Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that Mitochondrial Fission Process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein that is dispensable for mitochondrial division yet essential for cardiac structure and function. Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in a fatal, adult-onset dilated cardiomyopathy accompanied by extensive mitochondrial and cardiac remodeling during the transition to heart failure.

View Article and Find Full Text PDF

Protein post-translational modifications (PTMs) are essential elements of cellular communication. Their variations in abundance can affect cellular pathways, leading to cellular disorders and diseases. A widely used method for revealing PTM-mediated regulatory networks is their label-free quantitation (LFQ) by high-resolution mass spectrometry.

View Article and Find Full Text PDF

Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation.

View Article and Find Full Text PDF

Bacterial antibiotic resistance is a major threat to human health. A combination of antibiotics with metals is among the proposed alternative treatments. Only one such combination is successfully used in clinics; it associates antibiotics with the metal bismuth to treat infections by Helicobacter pylori.

View Article and Find Full Text PDF

Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment.

View Article and Find Full Text PDF

Cellular senescence is an irreversible growth arrest with a dynamic secretome, termed the senescence-associated secretory phenotype (SASP). Senescence is a cell-intrinsic barrier for reprogramming, whereas the SASP facilitates cell fate conversion in non-senescent cells. However, the mechanisms by which reprogramming-induced senescence regulates cell plasticity are not well understood.

View Article and Find Full Text PDF

RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored.

View Article and Find Full Text PDF

The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown.

View Article and Find Full Text PDF

Macropinocytosis refers to the nonselective uptake of extracellular molecules into many different types of eukaryotic cells within large fluid-filled vesicles named macropinosomes. Macropinosomes are relevant for a wide variety of cellular processes, such as antigen sampling in immune cells, homeostasis in the kidney, cell migration or pathogen uptake. Understanding the molecular composition of the different macropinosomes formed during these processes has helped to differentiate their regulations from other endocytic events.

View Article and Find Full Text PDF
Article Synopsis
  • Listeriolysin S (LLS) is a type of antimicrobial substance produced by hypervirulent bacteria that targets specific gram-positive bacteria and alters the composition of the host's gut microbiota.
  • Research shows that LLS remains associated with the producer bacteria's cell membrane and cytoplasm, not being secreted, and only living producer bacteria can exert its bactericidal effects.
  • It requires direct contact between the producer and target bacteria to effectively kill them, leading to changes in the target's cell membrane and influencing its susceptibility based on certain components found on its surface.
View Article and Find Full Text PDF

Humoral immune components have been individually studied in the context of interaction of host with , a major airborne fungal pathogen. However, a global view of the multitude and complex nature of humoral immune components is needed to bring new insight into host- interaction. Therefore, we undertook comparative proteomic analysis of the bronchoalveolar lavage fluid collected from individuals infected or colonized with versus controls, to identify those alveolar humoral components affected upon infection.

View Article and Find Full Text PDF

Cell growth and division require a balance between synthesis and hydrolysis of the peptidoglycan (PG). Inhibition of PG synthesis or uncontrolled PG hydrolysis can be lethal for the cells, making it imperative to control peptidoglycan hydrolase (PGH) activity. The synthesis or activity of several key enzymes along the PG biosynthetic pathway is controlled by the Hanks-type serine/threonine kinases (STKs).

View Article and Find Full Text PDF

Neutrophils are the most abundant circulating white blood cells and are the central players of the innate immune response. During their lifecycle, neutrophils mainly evolve under low oxygen conditions (0.1-4% O ), to which they are well adapted.

View Article and Find Full Text PDF

Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways.

View Article and Find Full Text PDF