Publications by authors named "Quentin Escoula"

High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity.

View Article and Find Full Text PDF

Diets high in saturated fatty acids (FA) represent a risk factor for the development of obesity and associated metabolic disorders, partly through their impact on the epithelial cell barrier integrity. We hypothesized that unsaturated FA could alleviate saturated FA-induced endoplasmic reticulum (ER) stress occurring in intestinal secretory goblet cells, and consequently the reduced synthesis and secretion of mucins that form the protective mucus barrier. To investigate this hypothesis, we treated well-differentiated human colonic LS174T goblet cells with palmitic acid (PAL)-the most commonly used inducer of lipotoxicity in in vitro systems-or -9, -6, or -3 unsaturated fatty acids alone or in co-treatment with PAL, and measured the impact of such treatments on ER stress and Muc2 production.

View Article and Find Full Text PDF

Obesity is now widely recognized to be associated with low-grade systemic inflammation. It has been shown that high-fat feeding modulates gut microbiota which strongly increased intestinal permeability leading to lipopolysaccharide absorption causing metabolic endotoxemia that triggers inflammation and metabolic disorders. N-3 polyunsaturated fatty acids (PUFAs) have been shown associated with anti-obesity properties, but results still remain heterogeneous and very few studies underlined the metabolic pathways involved.

View Article and Find Full Text PDF

Altering the gut microbiome may be beneficial to the host and recently arose as a promising strategy to manage obesity. Here, we investigated the relative contribution of ω3 polyunsaturated fatty acid (PUFA)-mediated alterations in the microbiota to metabolic parameter changes in mice. Four groups were compared: male fat-1 transgenic mice (with constitutive production of ω3 PUFAs) and male wild-type (WT) littermates fed an obesogenic (high fat/high sucrose [HFHS]) or a control diet.

View Article and Find Full Text PDF

Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF

Objective: To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet.

Design: We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like (), and . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months.

View Article and Find Full Text PDF