Publications by authors named "Quentin Barriere"

Legumes of the genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the odule-specific ysteine-ich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing.

View Article and Find Full Text PDF
Article Synopsis
  • * The antimicrobial peptide transporter BclA is crucial for the differentiation of these bacteria into functional forms; without it, rhizobia infect nodule cells but fail to develop fully.
  • * Research on metabolomics and transcriptomics reveals that the transition of rhizobia into bacteroids involves significant metabolic and gene expression changes, highlighting the importance of this symbiosis for the nitrogen cycle and potential benefits for sustainable agriculture.
View Article and Find Full Text PDF

In the symbiosis of the bean bug Riptortus pedestris with Burkholderia insecticola, the bacteria occupy an exclusive niche in the insect midgut and favor insect development and reproduction. In order to understand how the symbiotic bacteria stably colonize the midgut crypts and which services they provide to the host, we compared the cytology, physiology, and transcriptomics of free-living and midgut-colonizing B. insecticola.

View Article and Find Full Text PDF

Subterranean clover stunt virus (SCSV) is a type species of the genus in the family . It was the first single-stranded DNA plant virus with a multipartite genome, of which genomic DNA sequences had been determined. All nanoviruses have eight genome components except SCSV, for which homologs of two genome components present in all other nanovirus genomes, DNA-U2 and DNA-U4, were lacking.

View Article and Find Full Text PDF

Unlike most antimicrobial peptides (AMPs), the main mode of action of the subclass of proline-rich antimicrobial peptides (PrAMPs) is not based on disruption of the bacterial membrane. Instead, PrAMPs exploit the inner membrane transporters SbmA and YjiL/MdtM to pass through the bacterial membrane and enter the cytosol of specific Gram-negative bacteria, where they exert an inhibitory effect on protein synthesis. Despite sharing a high proline and arginine content with other characterized PrAMPs, the PrAMP Bac5 has a low sequence identity with them.

View Article and Find Full Text PDF

The unique ecology, pathology and undefined taxonomy of coconut foliar decay virus (CFDV), found associated with coconut foliar decay disease (CFD) in 1986, prompted analyses of old virus samples by modern methods. Rolling circle amplification and deep sequencing applied to nucleic acid extracts from virion preparations and CFD-affected palms identified twelve distinct circular DNAs, eleven of which had a size of about 1.3 kb and one of 641 nt.

View Article and Find Full Text PDF

Strain CCMM B554, also known as FSM-MA, is a soil dwelling and nodule forming, nitrogen-fixing bacterium isolated from the nodules of the legume L. in the Maamora Forest, Morocco. The strain forms effective nitrogen fixing nodules on species of the , and genera and is exceptional because it is a highly effective symbiotic partner of the two most widely used accessions, A17 and R108, of the model legume Gaertn.

View Article and Find Full Text PDF

Legumes harbor in their symbiotic nodule organs nitrogen fixing rhizobium bacteria called bacteroids. Some legumes produce Nodule-specific Cysteine-Rich (NCR) peptides in the nodule cells to control the intracellular bacterial population. NCR peptides have antimicrobial activity and drive bacteroids toward terminal differentiation.

View Article and Find Full Text PDF

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity.

View Article and Find Full Text PDF

Nutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp.

View Article and Find Full Text PDF

Nodules of legume plants are highly integrated symbiotic systems shaped by millions of years of evolution. They harbor nitrogen-fixing rhizobium bacteria called bacteroids. Several legume species produce peptides called nodule-specific cysteine-rich (NCR) peptides in the symbiotic nodule cells which house the bacteroids.

View Article and Find Full Text PDF

Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary.

View Article and Find Full Text PDF