Intratumoral heterogeneity can wreak havoc on current precision medicine strategies because of challenges in sufficient sampling of geographically separated areas of biodiversity distributed across centimeter-scale tumor distances. To address this gap, we developed a deep learning pipeline that leverages histomorphologic fingerprints of tissue to create "Histomic Atlases of Variation Of Cancers" (HAVOC). Using a number of objective molecular readouts, we demonstrate that HAVOC can define regional cancer boundaries with distinct biology.
View Article and Find Full Text PDFCerebral organoids have emerged as robust models for neurodevelopmental and pathological processes, as well as a powerful discovery platform for less-characterized neurobiological programs. Toward this prospect, we leverage mass-spectrometry-based proteomics to molecularly profile precursor and neuronal compartments of both human-derived organoids and mid-gestation fetal brain tissue to define overlapping programs. Our analysis includes recovery of precursor-enriched transcriptional regulatory proteins not found to be differentially expressed in previous transcriptomic datasets.
View Article and Find Full Text PDF