The KRAS gene plays a pivotal role in numerous cancers by encoding a GTPase that upon association with the plasma membrane activates the MAPK pathway, promoting cellular proliferation. In our study, we investigated small molecules that disrupt KRAS's membrane interaction, hypothesizing that such disruption could in turn inhibit mutant RAS signaling. Native mass spectrometry screening of KRAS-FMe identified compounds with a preference for interacting with the hypervariable region (HVR), and surface plasmon resonance (SPR) further refined our selection to graveoline as a compound exhibiting preferential HVR binding.
View Article and Find Full Text PDFThe oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer.
View Article and Find Full Text PDFProtein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates.
View Article and Find Full Text PDFThe appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations.
View Article and Find Full Text PDFDuring the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane.
View Article and Find Full Text PDFRAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques.
View Article and Find Full Text PDFKRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions.
View Article and Find Full Text PDFSmall GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood.
View Article and Find Full Text PDFRAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling.
View Article and Find Full Text PDFSecond harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets.
View Article and Find Full Text PDFActivation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex.
View Article and Find Full Text PDFThe development and progression of many human diseases often result in changes in gene expression and protein and metabolite concentrations. Changes at the protein and metabolite level often are detectable in biological fluids and tissues before the appearance of clinical symptoms, rendering them useful diagnostic and prognostic biomarkers. As with many conditions, the discovery of a sensitive and specific urinary biomarker for bladder cancer would save lives and reduce the suffering due to this condition.
View Article and Find Full Text PDFDemand for the experimental antineoplastic agent schweinfurthin A, for developmental testing, prompted a re-collection of leaf material of Macaranga schweinfurthii from the original collection site in Cameroon. During chromatographic purification of the organic solvent extract, analytical UPLC-PDA-TOFMS of stilbene-enriched fractions revealed the presence of six known schweinfurthins and two previously unknown stilbenes. The structures of these new compounds, schweinfurthins I and J (1 and 2), were elucidated by 1D- and 2D-NMR techniques.
View Article and Find Full Text PDFMetabolomics, the global profiling of metabolites in different living systems, has experienced a rekindling of interest partially due to the improved detection capabilities of the instrumental techniques currently being used in this area of biomedical research. The analytical methods of choice for the analysis of metabolites in search of disease biomarkers in biological specimens, and for the study of various low molecular weight metabolic pathways include NMR spectroscopy, GC/MS, CE/MS, and HPLC/MS. Global metabolite analysis and profiling of two different sets of data results in a plethora of data that is difficult to manage or interpret manually because of their subtle differences.
View Article and Find Full Text PDFMetabolic profiling using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) is integral to the rapidly expanding field of metabolomics, which is making progress in toxicology, plant science and various diseases, including cancer. In the area of oncology and metabolic phenotyping, researchers have probed the known changes in malignant cellular pathways using new experimental techniques to gain more insights, and others are exploiting these same cellular pathways for therapeutic drug targets and for novel cancer biomarkers, with the ultimate goal of translation to the clinic. Here, we discuss the challenges and opportunities in metabolic phenotyping for discovering novel cancer biomarkers, and we assess the clinical applicability of MS and NMR.
View Article and Find Full Text PDFHigh-resolution, liquid state nuclear magnetic resonance (NMR) spectroscopy is a popular platform for metabolic profiling because the technique is nondestructive, quantitative, reproducible, and the spectra contain a wealth of biochemical information. Because of the large dynamic range of metabolite concentrations in biofluids, statistical analyses of one-dimensional (1D) proton NMR data tend to be biased toward selecting changes in more abundant metabolites. Although two-dimensional (2D) proton-proton experiments can alleviate spectral crowding, they have been mainly used for structural determination.
View Article and Find Full Text PDFTwo new chondropsin-type macrolide lactams, poecillastrins B (1) and C (2), were isolated from aqueous extracts of the marine sponge Poecillastra sp. These trace metabolites were isolated in low yield (400-600 microg), and their structures were determined primarily by analysis of NMR data acquired using a cyrogenically cooled probe. High-quality 1D and 2D NMR data sets allowed complete assignment of the spectroscopic data and defined the new structures as 35-membered ring analogues of poecillastrin A (3).
View Article and Find Full Text PDFThe biophysical properties of oligodeoxyribonucleotides (ODNs) selectively modified with conformationally 'locked' bicyclo[3.1.0]hexane pseudosugars (Maier,M.
View Article and Find Full Text PDF4'-C-ethynyl-2'-deoxynucleosides belong to a novel class of nucleoside analogues endowed with potent activity against a wide spectrum of HIV viruses, including a variety of resistant clones. Although favorable selectivity indices were reported for several of these analogues, some concern still exists regarding the 3'-OH group and its role in cellular toxicity. To address this problem, we removed the 3'-OH group from 4'-C-ethynyl-2'-deoxycytidine (1a).
View Article and Find Full Text PDFThe advent of systems biology approaches that have stemmed from the sequencing of the human genome has led to the search for new methods to diagnose diseases. While much effort has been focused on the identification of disease-specific biomarkers, recent efforts are underway toward the use of proteomic and metabonomic patterns to indicate disease. We have developed and contrasted the use of both proteomic and metabonomic patterns in urine for the detection of interstitial cystitis (IC).
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2003
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool capable of providing a comprehensive metabolic profile of biofluids such as urine, plasma, and serum. Unfortunately, when measuring serum and plasma, the high protein concentration can obscure the signals originating from low molecular weight metabolites. We evaluated the use of different parameters within the Carr-Purcell-Meiboom-Gill (CPMG) pulse train of fast spin-echoes to remove the macromolecular signal contribution in one-dimensional proton (1H) NMR spectra.
View Article and Find Full Text PDFPoecillastrin A (1), a new polyketide-derived macrolide lactam, was isolated from a deep-water collection of the marine sponge Poecillastra species. The structure of poecillastrin A (1) was assigned using NMR data acquired at 500 MHz with an inverse-detection cryogenic probe and at 800 MHz with a room-temperature probe.
View Article and Find Full Text PDF