3D human cancer models provide a better platform for drug efficacy studies than conventional 2D culture, since they recapitulate important aspects of the in vivo microenvironment. While biofabrication has advanced model creation, bioprinting generally involves extruding individual cells in a bioink and then waiting for these cells to self-assemble into a hierarchical 3D tissue. This self-assembly is time consuming and requires complex cellular interactions with other cell types, extracellular matrix components, and growth factors.
View Article and Find Full Text PDFBottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer.
View Article and Find Full Text PDFThis topical review with original analysis and empirical results compares cell sensitivity to physical stress during printing. The objective is to frame a reproducible causation between printing environment and printed cell morphology, viability and phenotype stability. Content includes: (1) a topical review classifies the overlap between physical stress vectors during printing and mesenchymal stem cell sensitivities.
View Article and Find Full Text PDFThe utilization of the microfabrication technique to fabricate advanced computing chips has exponentially increased in the last few decades. Needless to say, this fabrication technique offers some unique advantages to develop micro-systems. Though many conventional microfabrication techniques today uses very harsh chemicals, the authors believe that the manipulation of system components and fabrication methods may aid in the utilization of the microfabrication techniques used in fabricating computer chips to develop advanced biological microfluidic systems.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2015
Advances in micro-electro-mechanical systems (MEMS) have led to an increased fabrication of micro-channels. Microfabrication techniques are utilized to develop microfluidic channels for continuous nutrition supply to cells inside a micro-environment. The ability of cells to build tissues and maintain tissue-specific functions depends on the interaction between cells and the extracellular matrix (ECM).
View Article and Find Full Text PDFThree-dimensional tissue platforms are rapidly becoming the method of choice for quantification of the heterogeneity of cell populations for many diagnostic and drug therapy applications. Microfluidic sensors and the integration of sensors with microfluidic systems are often described as miniature versions of their macro-scale counterparts. This technology presents unique advantages for handling costly and difficult-to-obtain samples and reagents as a typical system requires between 100 nL to 10 µL of working fluid.
View Article and Find Full Text PDFAn engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is produced using a two-stage manufacturing process which superimposes a printed porous alginate (Alg) network and a directionally frozen ceramic-polymer matrix.
View Article and Find Full Text PDF