Publications by authors named "Quddoos H Muqaddasi"

Sedimentation values and falling number in the last decades have helped maintain high baking quality despite rigorous selection for grain yield in wheat. Allelic combinations of major loci sustained the bread-making quality while improving grain yield. Glu-D1, Pinb-D1, and non-gluten proteins are associated with sedimentation values and falling number in European wheat.

View Article and Find Full Text PDF

Spikelet abortion is a phenomenon where apical spikelet primordia on an immature spike abort. Regardless of the row-type, both apical and basal spikelet abortion occurs, and their extent decides the number of grain-bearing spikelets retained on the spike-thus, affecting the yield potential of barley. Reducing spikelet abortion, therefore, represents an opportunity to increase barley yields.

View Article and Find Full Text PDF

The potential to increase barley grain yield lies in the indeterminate nature of its inflorescence meristem, which produces spikelets, the basic reproductive unit in grasses that are linked to reproductive success. During early reproductive growth, barley spikes pass through the maximum yield potential-a stage after which no new spikelet ridges are produced. Subsequently, spikelet abortion (SA), a phenomenon in which spikelets abort during spike growth, imposes a bottleneck for increasing the grain yield potential.

View Article and Find Full Text PDF

Spikelet indeterminacy and supernumerary spikelet phenotypes in barley multiflorus2.b mutant show polygenic inheritance. Genetic analysis of multiflorus2.

View Article and Find Full Text PDF

Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program, as they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This review provides a comprehensive overview of the established omics methods in five major cereals, namely rice, sorghum, maize, barley, and bread wheat.

View Article and Find Full Text PDF
Article Synopsis
  • Research is focused on finding new genetic resistance sources to Puccinia striiformis f. sp. tritici, the cause of yellow rust in wheat.
  • Two doubled haploid spring wheat populations were tested in Germany and Egypt, revealing significant quantitative trait loci (QTL) associated with yellow rust resistance.
  • Key findings include a strong QTL on chromosome 1B linked to an Iranian landrace and a moderate resistance QTL on chromosome 6B from a French variety, highlighting the potential of diverse genetic resources for improving wheat resistance to this disease.
View Article and Find Full Text PDF

Tan spot, caused by the fungus (), is a severe foliar disease of wheat ( L.). Improving genetic resistance is a durable strategy to reduce -related losses.

View Article and Find Full Text PDF

Total spikelet number per spike (TSN) is a major component of spike architecture in wheat (Triticum aestivum L.). A major and consistent quantitative trait locus (QTL) was discovered for TSN in a doubled haploid spring wheat population grown in the field over 4 years.

View Article and Find Full Text PDF

Grain quality traits determine the classification of registered wheat (Triticum aestivum L.) varieties. Although environmental factors and crop management practices exert a considerable influence on wheat quality traits, a significant proportion of the variance is attributed to the genetic factors.

View Article and Find Full Text PDF

We dissected the genetic basis of total spikelet number (TSN) along with other traits, viz. spike length (SL) and flowering time (FT) in a panel of 518 elite European winter wheat varieties. Genome-wide association studies (GWAS) based on 39,908 SNP markers revealed highly significant quantitative trait loci (QTL) for TSN on chromosomes 2D, 7A, and 7B, for SL on 5A, and FT on 2D, with 2D-QTL being the functional marker for the gene Ppd-D1.

View Article and Find Full Text PDF

Novel large-effect consistent QTL for anther extrusion (AE) to improve cross-pollination were mapped in doubled haploid populations derived from IPK gene bank spring wheat accessions. TaAP2-D, an ortholog of Cleistogamy1 in barley, is a likely candidate gene for AE in wheat. To establish a robust hybrid wheat breeding system, male lines harboring alleles that promote outcrossing should be developed.

View Article and Find Full Text PDF

blotch (STB) caused by the fungus is a devastating foliar disease of wheat ( L.) that can lead to substantial yield losses. Quantitative genetic resistance has been proposed as a durable strategy for STB control.

View Article and Find Full Text PDF

Most investigations to date aiming to identify the genetic basis of the stress response of wheat (Triticum aestivum L.) have focused on the response to single stress agents such as high temperature or drought, even though in the natural situation, these stresses tend often to occur together. Here, a panel of 108 spring type bread wheat cultivars was phenotyped for 15 yield and yield related traits for two years (2014/15 and 2015/16) under non-stressed conditions, under high temperature stress, under drought and under a combined high temperature and drought regime.

View Article and Find Full Text PDF

The production and cultivation of hybrid wheat is a possible strategy to close the yield gap in wheat. Efficient hybrid wheat seed production largely depends on high rates of cross-pollination which can be ensured through high anther extrusion (AE) by male parental lines. Here, we report the AE capacity and elucidate its genetics in 514 elite European winter wheat varieties via genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Hybrid wheat breeding is gaining prominence worldwide because it ensures higher and more static yield than conventionally bred varieties. The cleistogamous floral architecture of wheat ( L.) impedes anthers inside the floret, making it largely an inbreeder.

View Article and Find Full Text PDF

Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments.

View Article and Find Full Text PDF

In a number of crop species hybrids are able to outperform line varieties. The anthers of the autogamous bread wheat plant are normally extruded post anthesis, a trait which is unfavourable for the production of F1 hybrid grain. Higher anther extrusion (AE) promotes cross fertilization for more efficient hybrid seed production.

View Article and Find Full Text PDF