Environmental conditions, to which organisms are exposed during all their life, may cause possible adaptive responses with consequences in their subsequent life-history trajectory. The objective of this study was to investigate whether ecologically relevant combinations of hypoxia (40% and 100% air saturation) and temperature (15° and 20 °C), occurring during the larval period of European sea bass larvae (Dicentrarchus labrax), could have long-lasting impacts on the physiology of resulting juveniles. Hypoxic challenge tests were performed over one year to give an integrative evaluation of physiological performance.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2018
Several physiological functions in fish are shaped by environmental stimuli received during early life. In particular, early-life hypoxia has been reported to have long-lasting effects on fish metabolism, with potential consequences for fish life history traits. In the present study, we examine whether the synergistic stressors hypoxia (40% and 100% air saturation) and temperature (15° and 20°C), encountered during early life, could condition later metabolic response in European sea bass (Dicentrarchus labrax) juveniles.
View Article and Find Full Text PDFOcean acidification is a recognized consequence of anthropogenic carbon dioxide (CO) emission in the atmosphere. Despite its threat to marine ecosystems, little is presently known about the capacity for fish to respond efficiently to this acidification. In adult fish, acid-base regulatory capacities are believed to be relatively competent to respond to hypercapnic conditions.
View Article and Find Full Text PDFEuropean sea bass () inhabits coastal waters and may be exposed to hypoxia at different life stages, requiring physiological and behavioral adaptation. In the present study, we attempted to determine whether regulation of hemoglobin (Hb) gene expression plays a role in the physiological response to chronic moderate hypoxia in whole larvae and hematopoietic tissues (head kidney and spleen) of juveniles. We also tested the hypothesis that hypoxia exposure at the larval stage could induce a long-term effect on the regulation of Hb gene expression.
View Article and Find Full Text PDFBackground: The better understanding of how intestinal microbiota interacts with fish health is one of the key to sustainable aquaculture development. The present experiment aimed at correlating active microbiota associated to intestinal mucosa with Specific Growth Rate (SGR) and Hypoxia Resistance Time (HRT) in European sea bass individuals submitted to different nutritional histories: the fish were fed either standard or unbalanced diets at first feeding, and then mixed before repeating the dietary challenge in a common garden approach at the juvenile stage.
Results: A diet deficient in essential fatty acids (LH) lowered both SGR and HRT in sea bass, especially when the deficiency was already applied at first feeding.
Microplastics are present in marine habitats worldwide and may be ingested by low trophic organisms such as fish larvae, with uncertain physiological consequences. The present study aims at assessing the impact of polyethylene (PE 10-45 μM) microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Fish were fed an inert diet including 0, 10(4) and 10(5) fluorescent microbeads per gram from 7 until 43 days post-hatching (dph).
View Article and Find Full Text PDFThe objective of this study was to evaluate the combined effects of thermal acclimation and n-3 highly unsaturated fatty acids (n-3 HUFA) content of the food source on the aerobic capacities of fish in a thermal changing environment. The model used was the golden grey mullet Liza aurata, a species of high ecological importance in temperate coastal areas. For four months, fish were exposed to two food sources with contrasting n-3 HUFA contents (4.
View Article and Find Full Text PDFSince European sea bass (Dicentrarchus labrax) larvae occurred in coastal and estuarine waters at early life stages, they are likely to be exposed to reduced dissolved oxygen waters at a sensitive developmental stage. However, the effects of hypoxia at larval stage, which depend in part on fish species, remain very poorly documented in European sea bass. In the present study, the impacts of an experimental exposure to a chronic moderate hypoxia (40 % air saturation) between 30 and 38 days post-hatching on the physiological and developmental traits of European sea bass larvae were assessed.
View Article and Find Full Text PDFAn individual's environmental history may have delayed effects on its physiology and life history at later stages in life because of irreversible plastic responses of early ontogenesis to environmental conditions. We chose a marine fish, the common sole, as a model species to study these effects, because it inhabits shallow marine areas highly exposed to environmental changes. We tested whether temperature and trophic conditions experienced during the larval stage had delayed effects on life-history traits and resistance to hypoxia at the juvenile stage.
View Article and Find Full Text PDFThe influence of dietary ascorbic acid (AA) on growth and morphogenesis during the larval development of European sea bass (Dicentrarchus labrax) was evaluated until 45days post hatching. Diets incorporated 0, 5, 15, 30, 50 or 400mg AA per kg diet to give AA-0, AA-5, AA-15, AA-30, AA-50 and AA-400 dietary treatments, respectively. Dietary AA levels lower than 15mg/kg reduced larval growth and survival was affected in specimens fed diets devoid of AA.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2008
The influence of dietary vitamins on growth, survival, and morphogenesis was evaluated until day 38 of posthatching life in European sea bass larvae (Dicentrarchus labrax). A standard vitamin mix (VM), at double the concentration of the U.S.
View Article and Find Full Text PDFThe effect of the nature and form of supply of dietary lipids on larval development was investigated in European sea bass larvae, by considering the expression of several genes involved in morphogenesis. Fish were fed from 7 to 37 d post-hatch with five isoproteic and isolipidic compound diets incorporating different levels of EPA and DHA provided by phospholipid or neutral lipid. Phospholipid fraction containing 1.
View Article and Find Full Text PDFWe evaluated the effects of dietary lipid class (phospholipid vs. neutral lipid) and level of n-3 long-chain PUFA (LC-PUFA) on the growth, digestive enzymatic activity, and histological organization of the intestine and liver in European sea bass larvae. Fish were fed from the onset of exogenous feeding at 7 to 37 d post-hatch with five isoproteic and isolipidic compound diets with different levels of EPA and DHA.
View Article and Find Full Text PDFSea bass (Dicentrarchus labrax) larvae were fed from day 15 to day 35 with 4 isoenergetic formulated diets that varied in protein (30, 40, 50, 60%) and carbohydrate (37, 27, 17, 7%) content. The diets were designated as P30, P40, P50 and P60, respectively. Best growth and survival were noted for P50 larvae.
View Article and Find Full Text PDF