Publications by authors named "Quazi Abidur Rahman"

Background: Pain volatility is an important factor in chronic pain experience and adaptation. Previously, we employed machine-learning methods to define and predict pain volatility levels from users of the Manage My Pain app. Reducing the number of features is important to help increase interpretability of such prediction models.

View Article and Find Full Text PDF

Background: Measuring and predicting pain volatility (fluctuation or variability in pain scores over time) can help improve pain management. Perceptions of pain and its consequent disabling effects are often heightened under the conditions of greater uncertainty and unpredictability associated with pain volatility.

Objective: This study aimed to use data mining and machine learning methods to (1) define a new measure of pain volatility and (2) predict future pain volatility levels from users of the pain management app, Manage My Pain, based on demographic, clinical, and app use features.

View Article and Find Full Text PDF

Background: Pain is one of the most prevalent health-related concerns and is among the top 3 most common reasons for seeking medical help. Scientific publications of data collected from pain tracking and monitoring apps are important to help consumers and healthcare professionals select the right app for their use.

Objective: The main objectives of this paper were to (1) discover user engagement patterns of the pain management app, Manage My Pain, using data mining methods; and (2) identify the association between several attributes characterizing individual users and their levels of engagement.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is partially thickened and blood flow is (potentially fatally) obstructed. A test based on electrocardiograms (ECG) that record the heart electrical activity can help in early detection of HCM patients. This paper presents a cardiovascular-patient classifier we developed to identify HCM patients using standard 10-second, 12-lead ECG signals.

View Article and Find Full Text PDF

Test based on electrocardiograms (ECG) that record the heart electrical activity can help in early detection of patients with hypertrophic cardiomyopathy (HCM) where the heart muscle is partially thickened and blood flow is (potentially fatally) obstructed. This paper presents a cardiovascular-patient classifier we developed to identify HCM patients using standard 10-seconds, 12-lead ECG signals. Patients are classified as having HCM if the majority of the heartbeats are recognized as HCM.

View Article and Find Full Text PDF