Tapping-mode atomic force microscopy (AFM), in which the vibrating tip periodically approaches, interacts and retracts from the sample surface, is the most common AFM imaging method. The tip experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample, yet conventional AFM tips are limited in their ability to resolve these time-varying forces. We have created a specially designed cantilever tip that allows these interaction forces to be measured with good (sub-microsecond) temporal resolution and material properties to be determined and mapped in detail with nanoscale spatial resolution.
View Article and Find Full Text PDFTheory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be similar to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM and STM images differ substantially depending on the distance and bias voltage.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2003
Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors.
View Article and Find Full Text PDFPhys Rev B Condens Matter
April 1993
Phys Rev B Condens Matter
May 1990
Phys Rev B Condens Matter
December 1989
The atomic force microscope (AFM) can be used to image the surface of both conductors and nonconductors even if they are covered with water or aqueous solutions. An AFM was used that combines microfabricated cantilevers with a previously described optical lever system to monitor deflection. Images of mica demonstrate that atomic resolution is possible on rigid materials, thus opening the possibility of atomic-scale corrosion experiments on nonconductors.
View Article and Find Full Text PDFReal-space images with atomic resolution of the BiO plane of Bi(2)Sr(2)CaCu(2)O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase.
View Article and Find Full Text PDFPhys Rev B Condens Matter
August 1988
Atomic force microscope images of polymerized monolayers of n-(2-aminoethyl)-10,12-tricosadiynamide revealed parallel rows of molecules with a side-by-side spacing of approximately equal to 0.5 nanometer. Forces used for imaging (10(-8) newton) had no observable effect on the polymer strands.
View Article and Find Full Text PDFPhys Rev B Condens Matter
October 1987
Phys Rev B Condens Matter
August 1987
High-resolution transmission electron microscopy and scanning tunneling microscopy have been combined to examine the structure of the thin "native" oxide that forms on silicon surfaces at room temperature. Differences in the cleaning procedures for silicon wafers may affect the morphology of this oxide and critically influence further processing on the silicon substrates. An etch that ended with a dip in hydrofluoric acid provided a thinner oxide and a lower interface step density than did a sulfuric peroxide treatment.
View Article and Find Full Text PDFThe molecular structure of a fatty acid bilayer has been recorded with a scanning tunneling microscope operating in air. The molecular film, a bilayer of cadmium icosanoate (arachidate), was deposited onto a graphite substrate by the Langmuir-Blodgett technique. The packing of the lipid film was found to be partially ordered.
View Article and Find Full Text PDFThis paper reports preliminary results of the observation by acoustic microscopy of living cells in vitro. The scanning acoustic microscope uses high-frequency sound waves to produce images with submicrometer resolution. The contrast observed in acoustic micrographs of living cells depends on the acoustic properties (i.
View Article and Find Full Text PDF