Neuroendocrine-type ATP-sensitive K (K) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2), comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K-selective inward rectifier (Kir6.
View Article and Find Full Text PDFIntroduction: In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detector's response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E¯(r) must be known or another equivalent energy quality parameter used.
View Article and Find Full Text PDFNeuroendocrine-type K(ATP) channels, (SUR1/Kir6.2)4, couple the transmembrane flux of K(+), and thus membrane potential, with cellular metabolism in various cell types including insulin-secreting β-cells. Mutant channels with reduced activity are a cause of congenital hyperinsulinism, whereas hyperactive channels are a cause of neonatal diabetes.
View Article and Find Full Text PDFPurpose: In photon-brachytherapy (BT), all data for clinical dosimetry (e.g., the dose-rate constant) are not measured in water, but calculated, based on MC-simulation.
View Article and Find Full Text PDFK(ATP) channels, (SUR1/Kir6.2)(4) (sulfonylurea receptor type 1/potassium inward rectifier type 6.2) respond to the metabolic state of pancreatic β-cells, modulating membrane potential and insulin exocytosis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2012
ATP-sensitive K(+) (K(ATP)) channels consist of two types of subunits, K(IR)6.x that form the pore, and sulfonylurea receptors (SURs) that serve as regulatory subunits. SURs are ATP-binding cassette (ABC) proteins and contain, in addition to two nucleotide binding folds, the binding sites for channel openers such as diazoxide and P1075 and channel inhibitors such as glibenclamide (GBC) and repaglinide.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2012
The pancreatic K(ATP) channel, SUR1/Kir6.2, couples insulin secretion to the plasma glucose level. The channel is an octamer with four Kir6.
View Article and Find Full Text PDFSulphonylurea receptors (SURs) serve as regulatory subunits of ATP-sensitive K(+) channels. SURs are members of the ATP-binding cassette (ABC) protein superfamily and contain two conserved nucleotide-binding domains (NBDs) which bind and hydrolyse MgATP; in addition, they carry the binding sites for the sulphonylureas like glibenclamide (GBC) which close the channel and for the K(ATP) channel openers such as P1075. Here we have exchanged the conserved Lys in the Walker A motif by Arg in both NBDs of SUR2B, the regulatory subunit of the vascular K(ATP) channel.
View Article and Find Full Text PDFGen Physiol Biophys
December 2009
The renin-secreting juxtaglomerular cells (JGC) in the media of the afferent arteriole at the vessel pole are the major source of circulating renin. The control of renin secretion is complex with increases in cAMP being the major stimulus and increases in intracellular free Ca2+ concentration ([Ca2+]i) being inhibitory. We measured [Ca2+]i in the afferent arteriole from mostly JGC.
View Article and Find Full Text PDFDtsch Med Wochenschr
April 2009
It is evident that the complete elimination of measles, mumps and varicella has not yet been accomplished, as various outbreaks have shown. In the recent past the number of infections of teenagers and adults with these so called 'children's diseases' have been increasing. The course of the infections in these cases are often severe.
View Article and Find Full Text PDFBackground And Purpose: The antidiabetic sulphonylurea, glibenclamide, acts by inhibiting the pancreatic ATP-sensitive K(+) (K(ATP)) channel, a tetradimeric complex of K(IR)6.2 and sulphonylurea receptor 1 (K(IR)6.2/SUR1)(4).
View Article and Find Full Text PDFbeta-Cell-type K(ATP) channels are octamers assembled from Kir6.2/KCNJ11 and SUR1/ABCC8. Adenine nucleotides play a major role in their regulation.
View Article and Find Full Text PDFBackground: Renin is mainly secreted from the juxtaglomerular cells (JGC) in the kidney situated in the afferent arteriole close to the vessel pole. Angiotensin II (ANG II) and adenosine inhibit renin secretion and synergistically constrict the afferent arteriole. ANG II depolarises JGC and increases the cytoplasmic free Ca2+ concentration [Ca2+]i.
View Article and Find Full Text PDFATP-sensitive K(+) (K(ATP)) channels are composed of pore-forming subunits (Kir6.x) and of regulatory subunits, the sulfonylurea receptors (SURx). Subtypes of K(ATP) channels are expressed in different organs.
View Article and Find Full Text PDFBackground And Purpose: ATP-sensitive K+ (KATP) channels are composed of pore-forming subunits (Kir6.x) and of sulphonylurea receptors (SUR). Both sulphonylureas and K(ATP) channel openers act by binding to SUR.
View Article and Find Full Text PDFAims/hypothesis: Sulfonylureas and glinides close beta cell ATP-sensitive K(+) (K(ATP)) channels to increase insulin release; the concomitant closure of cardiovascular K(ATP) channels, however, leads to complications in patients with cardiac ischaemia. The insulinotrope repaglinide is successful in therapy, but has been reported to inhibit the recombinant K(ATP) channels of beta cells, cardiocytes and non-vascular smooth muscle cells with similar potencies, suggesting that the (patho-)physiological role of the cardiovascular K(ATP) channels may be overstated. We therefore re-examined repaglinide's potency at and affinity for the recombinant pancreatic, myocardial and vascular K(ATP) channels in comparison with glibenclamide.
View Article and Find Full Text PDFTotal Body Irradiation (TBI) is one main component in the interdisciplinary treatment of widely disseminated malignancies predominantly of haematopoietic diseases. Combined with intensive chemotherapy, TBI enables myeloablative high dose therapy and immuno-ablative conditioning treatment prior to subsequent transplantation of haematopoietic stem cells: bone marrow stem cells or peripheral blood progenitor stem cells. Jointly prepared by DEGRO and DGMP, the German Society of Radio-Oncology, and the German Association of Medical Physicists, this DEGRO/DGMP-Leitlinie Ganzkoerper-Strahlenbehandlung - DEGRO/DGMP Guideline Whole Body Radiotherapy, summarises the concepts, principles, facts and common methods of Total Body Irradiation and poses a set of recommendations for reliable and successful application of high dose large-field radiotherapy as essential part of this interdisciplinary, multi-modality treatment concept.
View Article and Find Full Text PDFATP-sensitive K(+) channels (K(ATP) channels) are complexes of inwardly rectifying K(+) channels (Kir6.x) and sulphonylurea receptors (SURs). Kir6.
View Article and Find Full Text PDF1. ATP-sensitive K(+) channels (K(ATP) channels) are tetradimeric complexes of inwardly rectifying K(+) channels (Kir6.x) and sulphonylurea receptors (SURs).
View Article and Find Full Text PDFInsulin secretagogues (sulfonylureas and glinides) increase insulin secretion by closing the ATP-sensitive K+ channel (KATP channel) in the pancreatic beta-cell membrane. KATP channels subserve important functions also in the heart. First, KATP channels in coronary myocytes contribute to the control of coronary blood flow at rest and in hypoxia.
View Article and Find Full Text PDFRenin, the key element of the renin-angiotensin-aldosterone system, is mainly produced by and stored in the juxtaglomerular cells in the kidney. These cells are situated in the media of the afferent arteriole close to the vessel pole and can transform into smooth muscle cells and vice versa. In this study, the electrophysiological properties and the molecular identity of the K+ channels responsible for the resting membrane potential (approximately -60 mV) of the juxtaglomerular cells were examined.
View Article and Find Full Text PDF1. ATP-sensitive K(+) channels (K(ATP) channels) are composed of pore-forming subunits (Kir6.x) and of regulatory subunits, the sulphonylurea receptors (SURx).
View Article and Find Full Text PDFIntravascular brachytherapy (IVB) can significantly reduce the risk of restenosis after interventional treatment of stenotic arteries, if planned and applied correctly. To facilitate computer-based IVB planning, a three-dimensional vessel model has been derived from information on coronary artery segments acquired by intravascular ultrasound (IVUS) and biplane angiography. Part I describes the approach of model construction and presents possibilities of visualization.
View Article and Find Full Text PDFPurpose: Beta radiation has found increasing interest in intravascular brachytherapy for successfully overcoming the severe problem of restenosis after interventional treatment of arterial stenosis. Prior to initiating procedures applying beta radiation there is a common need to specify methods for the determination and specification of the absorbed dose to water or tissue and their spatial distributions. The DIN-NAR standardization in radiology task group Dosimetry has initiated an international ad hoc working group for an ISO new work item proposal on the standardization of procedures in clinical beta radiation dosimetry.
View Article and Find Full Text PDF