Neuromorphic computing, inspired by the brain, holds significant promise for advancing artificial intelligence. Artificial optoelectronic synapses, which can convert optical signals into electrical signals, play a crucial role in neuromorphic computing. In this study, we successfully fabricated a flexible artificial optoelectronic synapse device based on the ZnO/PDMS structure by utilizing the magnetron sputtering technique to deposit the ZnO film on a flexible substrate.
View Article and Find Full Text PDFPiezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core-shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established using the finite element method. We performed a sweep analysis of several parameters of the model.
View Article and Find Full Text PDFIt is usually necessary but difficult to achieve reliable communication between the primary side and pick-up side in the wireless power transfer (WPT) system due to magnetic interferences. In this paper, a novel parallel transmission method for wireless power and data is proposed, which is based on the frequency shift keying (FSK) modulation and demodulation. The data are transmitted by changing the working frequency of the inverter and then demodulated based on the phase-locked loop (PLL) technology.
View Article and Find Full Text PDF