Publications by authors named "Quanying Fu"

Nucleic acid detection, as an important molecular diagnostic method, is widely used in bacterial identification, disease diagnosis. For detecting the nucleic acid of bacteria, the prerequisite is to release nucleic acids inside the bacteria. The common means to release nucleic acids is the chemical method, which involves complex processes, is time-consuming, and remains chemical inhibitors.

View Article and Find Full Text PDF

Emerging infectious diseases pose a serious threat to human health and affect social stability. In recent years, the epidemic situation of emerging infectious diseases is very serious; among these infectious diseases, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected many countries and regions in a short time. The prevention and treatment of these diseases require rapid on-site detection methods.

View Article and Find Full Text PDF

The development of easy-to-use, low-cost, and visualized detection platforms for screening human dental caries and periodontal diseases is in urgent demand. In this work, a Au@Ag nanorods-poly(dimethylsiloxane) (Au@Ag NRs-PDMS) wearable mouthguard, which can visualize the tooth lesion sites through the color change of it at the corresponding locations, is presented. The Au@Ag NRs-PDMS composite exhibits a distinct color response to hydrogen sulfide (H S) gas generated by bacterial decay at the lesion sites.

View Article and Find Full Text PDF

Biointerface sensors have brought about remarkable advances in modern biomedicine. To accurately monitor bioentity's behaviors, biointerface sensors need to capture three main types of information, which are the electric, spectroscopic, and morphologic signals. Simultaneously obtaining these three types of information is of critical importance in the development of future biosensor, which is still not possible in the existing biosensors.

View Article and Find Full Text PDF

The worldwide epidemic of novel coronavirus disease (COVID-19) has led to a strong demand for highly efficient immunobinding to achieve rapid and accurate on-site detection of SARS-CoV-2 antibodies. However, hour-scale time-consumption is usually required to ensure the adequacy of immunobinding on expensive large instruments in hospitals, and the common false negative or positive results often occur in rapid on-site immunoassay (e.g.

View Article and Find Full Text PDF

Accurate detection and early diagnosis of oral diseases such as dental caries and periodontitis, can be potentially achieved by detecting the secretion of volatile sulfur compounds (VSCs) in oral cavities. Current diagnostic approaches for VSCs can detect the existence and concentrations, yet are not capable of locating the dental lesion sites. Herein, the development of a unique approach for accurately locating dental lesion sites using a fluorescent mouthguard consisting of the zinc oxide-poly(dimethylsiloxane) (ZnO-PDMS) nanocomposite to detect the local release of VSCs is reported.

View Article and Find Full Text PDF

Recently, biosensing based on weak coupling in plasmon-emitter hybrid nanostructures exhibits the merits of simplicity and high sensitivity, and attracts increasing attention as an emerging nano-sensor. In this study, we propose an innovative plasmon-regulated fluorescence resonance energy transfer (plasmon-regulated FRET) sensing strategy based on a plasmon-emitter hybrid nanostructure of gold nanorod-quantum dots (Au NR-QDs) by partially modifying QDs onto the surfaces of Au NRs. The Au NR-QDs showed good sensitivity and reversibility against refractive index change.

View Article and Find Full Text PDF