Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).
View Article and Find Full Text PDFClinical application of chimeric molecules for targeted protein degradation has been limited by unfavorable drug-like properties and biosafety concerns arising from nonspecific biodistribution after systemic administration. Here we develop a method to engineer platelets for degradation of either intracellular or extracellular proteins of interest (POIs) in vivo by covalently labeling heat shock protein 90 (HSP90) in platelets with a POI ligand. The degrader platelets (DePLTs) target wound areas and undergo activation.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
October 2024
The adoptive transfer of T cells redirected by chimeric antigen receptors (CARs) has made a dramatic breakthrough in defeating hematological malignancies. However, in solid tumor treatment, CAR-T-cell therapy has attained limited therapeutic benefits due to insufficient infiltration and expansion, rapidly diminishing function following adoptive transfer, and severe life-threatening toxicities. To address these challenges, advancements in nanotechnology have utilized innovative approaches to devise stronger CAR-T cells with reduced toxicity and enhanced anti-tumor activity.
View Article and Find Full Text PDFTargeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS).
View Article and Find Full Text PDFConspectusCells, particularly living cells, serve as natural carriers of bioactive substances. Their inherent low immunogenicity and multifunctionality have garnered significant attention in the realm of disease treatment applications, specifically within the domains of cancer immunotherapy and regenerative tissue repair. Nevertheless, several prominent challenges impede their swift translation into clinical applications, including obstacles related to large-scale production feasibility and high utilization costs.
View Article and Find Full Text PDFSplittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3β1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies.
Methods: Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma.
Adv Sci (Weinh)
April 2024
Bacteria have distinctive properties that make them ideal for biomedical applications. They can self-propel, sense their surroundings, and be externally detected. Using bacteria as medical therapeutic agents or delivery platforms opens new possibilities for advanced diagnosis and therapies.
View Article and Find Full Text PDFNeutrophils have recently emerged as promising carriers for drug delivery due to their unique properties including rapid response toward inflammation, chemotaxis, and transmigration. When integrated with nanotechnology that has enormous advantages in improving treatment efficacy and reducing side effects, neutrophil-based nano-drug delivery systems have expanded the repertoire of nanoparticles employed in precise therapeutic interventions by either coating nanoparticles with their membranes, loading nanoparticles inside living cells, or engineering chimeric antigen receptor (CAR)-neutrophils. These neutrophil-inspired therapies have shown superior biocompatibility, targeting ability, and therapeutic robustness.
View Article and Find Full Text PDFGene therapy that can introduce, counteract, or replace genes possesses great potential to address diseases at their genetic roots. A wide range of technologies, such as RNA interference, genome editing, DNA transformation, and mRNA vaccines, have been extensively investigated to modulate gene expression in an attempt to treat a myriad of diseases. Despite the great promise of gene therapeutics, a series of intracellular and extracellular barriers must be surmounted, including rapid clearance in circulation, insufficient site-specific accumulation, suboptimal cellular internalization, and deficient transfection efficiency.
View Article and Find Full Text PDFMacrophages, as one of the most abundant tumor-infiltrating cells, play an important role in tumor development and metastasis. The frequency and polarization of tumor-associated macrophages (TAMs) correlate with disease progression, tumor metastasis, and resistance to various treatments. Pro-inflammatory M1 macrophages hold the potential to engulf tumor cells.
View Article and Find Full Text PDFThe relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments.
View Article and Find Full Text PDFExploring the response of malignant cells to intracellular metabolic stress is critical for understanding pathologic processes and developing anticancer therapies. Herein, we developed ferritin-targeting proteolysis targeting chimeras (PROTACs) to establish the iron excess stress inside cancer cells and investigated subsequent cellular behaviors. We conjugated oleic acid that binds to the ferritin dimer to the ligand of von Hippel-Lindau (VHL) E3 ligase through an alkyl linker.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) can reinvigorate T cells to eradicate tumor cells, showing great potential in combating various types of tumors. We propose a delivery strategy to enhance tumor-selective ICI accumulation, which leverages the responsiveness of platelets and platelet-derivatives to coagulation cascade signals. A fused protein tTF-RGD targets tumor angiogenic blood vessel endothelial cells and initiates the coagulation locoregionally at the tumor site, forming a "cellular hive" to recruit anti-PD-1 antibody (aPD-1)-conjugated platelets to the tumor site and subsequently activating platelets to release aPD-1 antibody to reactivate T cells for improved immunotherapy.
View Article and Find Full Text PDFImmunotherapy has achieved revolutionary success in clinics, but it remains challenging for treating hepatocellular carcinoma (HCC) characterized by high vascularization. Here, it is reported that metal-organic framework-801 (MOF-801) can be employed as a stimulator of interferon genes (STING) through Toll-like receptor 4 (TLR4) not just as a drug delivery carrier. Notably, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) and 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) STING agonist with vascular disrupting function coordinates with MOF-801 to self-assemble into a nanoparticle (MOF-CpG-DMXAA) that effectively delivers CpG ODNs and DMXAA to cells for synergistically improving the tumor microenvironment by reprogramming tumor-associated macrophages (TAMs), promoting dendritic cells (DCs) maturation, as well as destroying tumor blood vessels.
View Article and Find Full Text PDFCell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities.
View Article and Find Full Text PDFInflammatory bowel diseases (IBDs) are often associated with elevated levels of reactive oxygen species (ROS) and highly dysregulated gut microbiota. In this study, we synthesized a polymer of hyaluronic acid-poly(propylene sulfide) (HA-PPS) and developed ROS-scavenging nanoparticles (HPN) that could effectively scavenge ROS. To achieve colon tissue targeting effects, the HPN nanoparticles were conjugated to the surface of modified probiotic Nissle 1917 (EcN).
View Article and Find Full Text PDFDespite the rapid development of immunotherapy, low response rates, poor therapeutic outcomes and severe side effects still limit their implementation, making the augmentation of immunotherapy an important goal for current research. DNA, which has principally been recognized for its functions of encoding genetic information, has recently attracted research interest due to its emerging role in immune modulation. Inspired by the intrinsic DNA-sensing signaling that triggers the host defense in response to foreign DNA, DNA or nucleic acid-based immune stimulators have been used in the prevention and treatment of various diseases.
View Article and Find Full Text PDFPore-forming Gasdermin protein-induced pyroptosis in tumor cells promotes anti-tumor immune response through the release of pro-inflammatory cytokines and immunogenic substances after cell rupture. However, endosomal sorting complexes required for transport (ESCRT) III-mediated cell membrane repair significantly diminishes the tumor cell pyroptosis by repairing and subsequently removing gasdermin pores. Here, we show that blocking calcium influx-triggered ESCRT III-dependent membrane repair through a biodegradable nanoparticle-mediated sustained release of calcium chelator (EI-NP) strongly enhances the intracellularly delivered GSDMD-induced tumor pyroptosis via a bacteria-based delivery system (VNP-GD).
View Article and Find Full Text PDFIntroduction: Cancer immunotherapies have created a new generation of therapeutics to employ the immune system to attack cancer cells. However, these therapies are typically based on biologics that are nonspecific and often exhibit poor tumor penetration and dose-limiting toxicities. Nanocarriers allow the opportunity to overcome these barriers as they have the capabilities to direct immunomodulating drugs to tumor sites via passive and active targeting, decreasing potential adverse effects from nonspecific targeting.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) remains incurable despite aggressive implementation of multimodal treatments after surgical debulking. Almost all patients with GBM relapse within a narrow margin around the initial resected lesion due to postsurgery residual glioma stem cells (GSCs). Tracking and eradicating postsurgery residual GSCs is critical for preventing postoperative relapse of this devastating disease, yet effective strategies remain elusive.
View Article and Find Full Text PDFProteolysis Targeting Chimeras (PROTACs), an emerging therapeutic entity designed to degrade target proteins by hijacking the ubiquitin-proteasome system, have the potential to revolutionize the healthcare industry. The broad applicability of this protein degradation strategy has been verified with a few E3 ligases and a variety of distinct targets through the construction of modular chimeric structures. Despite recent efforts to promote the use of PROTACs for clinical applications, most PROTACs do not make it beyond the preclinical stage of drug development.
View Article and Find Full Text PDFWith the outstanding achievement of chimeric antigen receptor (CAR)-T cell therapy in the clinic, cell-based medicines have attracted considerable attention for biomedical applications and thus generated encouraging progress. As the basic construction unit of organisms, cells harbor low immunogenicity, desirable compatibility, and a strong capability of crossing various biological barriers. However, there is still a long way to go to fix significant bottlenecks for their clinical translation, such as facile preparation, strict stability requirements, scale-up manufacturing, off-target toxicity, and affordability.
View Article and Find Full Text PDFImmunosuppressive cells residing in the tumor microenvironment, especially tumor associated macrophages (TAMs), hinder the infiltration and activation of T cells, limiting the anti-cancer outcomes of immune checkpoint blockade. Here, we report a biocompatible alginate-based hydrogel loaded with Pexidartinib (PLX)-encapsulated nanoparticles that gradually release PLX at the tumor site to block colony-stimulating factor 1 receptors (CSF1R) for depleting TAMs. The controlled TAM depletion creates a favorable milieu for facilitating local and systemic delivery of anti-programmed cell death protein 1 (aPD-1) antibody-conjugated platelets to inhibit post-surgery tumor recurrence.
View Article and Find Full Text PDFExploration (Beijing)
June 2022
Immunotherapy strategies that use cell-based delivery systems have sparked much interest in the treatment of malignancies, owing to their high biocompatibility, excellent tumor targeting capability, and unique biofunctionalities in the tumor growth process. A variety of design principles for cell-based immunotherapy, including cell surface decoration, cell membrane coating, cell encapsulation, genetically engineered cell, and cell-derived exosomes, give cancer immunotherapy great potential to improve therapeutic efficacy and reduce adverse effects. However, the treatment efficacy of cell-based delivery methods for immunotherapy is still limited, and practical uses are hampered due to complex physiological and immunological obstacles, such as physical barriers to immune infiltration, immunosuppressive tumor microenvironment, upregulation of immunosuppressive pathways, and metabolic restriction.
View Article and Find Full Text PDF