Amino alcohols, particularly remote amino alcohols and peptide alcohols, are valuable due to their functional diversity in biologically active compounds. However, traditional synthesis methods face significant challenges, making electrochemistry an attractive alternative. We have developed a mild and biocompatible sequential paired electrolysis strategy, leveraging copper-electrocatalysis to synthesize diverse remote amino alcohols, including unnatural peptide alcohols.
View Article and Find Full Text PDFHerein we reported a novel strategy for constructing benzoxepine fused succinimide derivatives via a phosphine-catalyzed [3 + 4] cyclization of α-substituted allenes and salicylaldehyde Schiff bases. This methodology serves as a conduit for the construction of benzoxepine derivatives in good yields under mild conditions by an unprecedented mode involving the β'-carbon of allenes. Density functional theory calculations were conducted to study the possible mechanism.
View Article and Find Full Text PDFα,β-Dehydrogenation of flavanones represents an ideal strategy to synthesize various flavones but remains challenging because of the requirements for rigorous conditions. Herein, a straightforward and efficient route for the synthesis of flavones via electrocatalysis is disclosed. This electro-oxidative approach shows a broad substrate scope, including azaflavanones and thioflavanones, which could be performed in an undivided cell without the removal of air or water and in the absence of metal catalysts, ligands, or external oxidants.
View Article and Find Full Text PDFFree radical three-component nitration/spirocyclization of unsaturated sulfonamides/amides with -butyl nitrite was developed for the construction of diverse NO-revised 4-azaspiro[4.5]decanes. This tandem system featured metal-free participation, simple operation, good selectivity/yields, and a green/low-cost O source.
View Article and Find Full Text PDFAdipose tissue is the second most important site of estrogen production, where androgens are converted into estrogen by aromatase. While gastric cancer patients often develop adipocyte-rich peritoneal metastasis, the underlying mechanism remains unclear. In this study, we identified the G-protein-coupled estrogen receptor (GPER1) as a promoter of gastric cancer peritoneal metastasis.
View Article and Find Full Text PDFA new phosphine-catalyzed reaction of α-substituted allenes with aryl imines, in stark contrast to classic cycloaddition reactions, has been developed. This reaction delivers valuable highly functionalized itaconimides with excellent stereoselectivities by a new «un-cyclizing» reaction mode involving β'-carbon of α-substituted allenes. Moreover, the present «un-cyclizing» reaction can also be carried out in a one-pot fashion and scaled up to the gram scale by using aryl aldehydes, without the need to isolate the aryl imines.
View Article and Find Full Text PDFHyaluronic Acid (HA)-based pre-drugs can enable targeted drug delivery to cancer cells with CD44-high expressing, thus, it is essential to design an efficient, target specific drug delivery system based on HA. Plasma, as a simple and clean tool, has been widely used in the modification and crosslinking of biological materials in recent years. In this paper, we used the Reactive Molecular Dynamic (RMD) to explore the reaction between reactive oxygen species (ROS) in plasma and HA with drugs (PTX, SN-38, and DOX), in order to examine possible drug-coupled systems.
View Article and Find Full Text PDFThis work demonstrated that bio-jet fuels can be directionally prepared from bagasse (a typical lignocellulose biomass) by integrating bio- and chemical catalysis reaction processes. This controllable transformation started with the preparation of acetone/butanol/ethanol (ABE) intermediates through the enzymolysis and fermentation of bagasse. Pretreatment of bagasse by deep eutectic solvent (DES) promoted the enzymatic hydrolysis and fermentation because it destroyed the structure of biomass and remove lignin in lignocellulose.
View Article and Find Full Text PDFConstruction of C-N bond continues to be one part of the most significant goals in organic chemistry because of the universal applications of amines in pharmaceuticals, materials and agrochemicals. However, E2 elimination through classic S2 substitution of alkyl halides lead to generation of alkenes as major side-products. Thus, formation of a challenging C(sp)-N bond especially on tertiary carbon center remains highly desirable.
View Article and Find Full Text PDFAngiogenesis and increased permeability are essential pathological basis for the development of ovarian hyperstimulation syndrome (OHSS). Kallistatin (KS) is an endogenous anti-inflammatory and anti-angiogenic factor that participates in a variety of diseases, but its role in OHSS remains unknown. In this study, treating a human ovarian granulosa-like tumour cell line KGN and human primary granulosa cells (PGCs) with human chorionic gonadotropin (hCG) reduced the expression of KS, but increased the expression of VEGF.
View Article and Find Full Text PDFA stepped leader propagated along the previous return-stroke channel in triggered lightning. After the stepped leader decayed, the first bidirectional leader went through the process of initiation, propagation and dissipation. Then the second bidirectional leader initiated at the termination of the decayed first bidirectional leader and propagated toward the ground, generating the fourth return-stroke.
View Article and Find Full Text PDFAlthough tissue-resident-memory T (T) cells, a recently identified non-circulating memory T cell population, play a crucial role in mediating local immune responses and protect against pathogens upon local reinfection, the composition, effector function, and specificity of T cells in the kidney and their relevance for chronic kidney disease remain unknown. In this study, we found that renal tissue displayed high abundance of tissue-resident lymphocytes, and the proportion of CD8 T cells was significantly increased in the kidney from patients and mice with focal segmental glomerulosclerosis (FSGS), diabetic kidney disease (DKD), and lupus nephritis (LN). Mechanistically, IL-15 significantly promoted CD8 T cell formation and activation, thereby promoting podocyte injury and glomerulosclerosis.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). Cytokine provide signals for leukemia cells to improve their survival in the BM microenvironment. Previously, we identified interleukin-33 (IL-33) as a promoter of cell survival in a human AML cell line and primary mouse leukemia cells.
View Article and Find Full Text PDFThere is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) participate in a variety of physiologic functions, and several GPCRs have critical physiologic and pathophysiologic roles in the regulation of renal function. We investigated the role of Gpr97, a newly identified member of the adhesion GPCR family, in AKI. AKI was induced by ischemia-reperfusion or cisplatin treatment in Gpr97-deficient mice.
View Article and Find Full Text PDFA five-year field experiment was conducted to investigate the effects of straw application on nitrate leaching loss. Treatments included soil that was not treated (control), soil treated with straw at a low rate (4,500 kg ha, T1) and soil treated with straw at a high rate (9,000 kg ha, T2). Nitrate-nitrogen leaching in the 10, 20, 30, 60, and 90 cm soil layers was measured using the resin-core method.
View Article and Find Full Text PDFUnlabelled: Despite substantial progress being made in understanding the mechanisms contributing to the pathogenesis of renal fibrosis, there are only a few therapies available to treat or prevent renal fibrosis in clinical use today. Therefore, identifying the key cellular and molecular mediators involved in the pathogenesis of renal fibrosis will provide new therapeutic strategy for treating patients with chronic kidney disease (CKD). β-Arrestin-1, a member of β-arrestin family, not only is a negative adaptor of G protein-coupled receptors (GPCRs), but also acts as a scaffold protein and regulates a diverse array of cellular functions independent of GPCR activation.
View Article and Find Full Text PDFThe continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.
View Article and Find Full Text PDFBioresour Technol
September 2013
Transformation of lignin to ethylbenzene can provide an important bulk raw material for the petrochemical industry. This work explored the production of ethylbenzene from lignin through the directional catalytic depolymerization of lignin into the aromatic monomers followed by the selective alkylation of the aromatic monomers. For the first step, the aromatics selectivity of benzene derived from the catalytic depolymerization of lignin reached about 90.
View Article and Find Full Text PDFBiomass conversion into benzene, toluene and xylenes (BTX) can provide basic feedstocks for the petrochemical industry, which also serve as the most important aromatic platform molecules for development of high-end chemicals. Present work explored a new route for transformation of bio-oil tar into BTX through current-enhanced catalytic conversion (CECC), involving the synergistic effect between the zeolite catalyst and current to promote the deoxygenation and cracking reactions. The proposed transformation shows an excellent BTX aromatics selectivity of 92.
View Article and Find Full Text PDFCatalytic conversion of rice husk, sawdust, sugarcane bagasse, cellulose, hemicellulose and lignin into olefins was performed with HZSM-5 containing 6 wt.% lanthanum. The olefins yields for different feedstocks decreased in the order: cellulose>hemicellulose>sugarcane bagasse>rice husk>sawdust>lignin.
View Article and Find Full Text PDFLight olefins are the basic building blocks for the petrochemical industry. In this work, selective production of light olefins from catalytic cracking of bio-oil was performed by using the La/HZSM-5 catalyst. With a nearly complete conversion of bio-oil, the maximum yield reached 0.
View Article and Find Full Text PDFA novel approach for high efficient conversion of the CO(2)-rich bio-syngas into the CO-rich bio-syngas was carried out by using biomass char and Ni/Al(2)O(3) catalyst, which was successfully applied for production of bio-methanol from bio-oil. After the bio-syngas conditioning, the CO(2)/CO ratio prominently dropped from 6.33 to 0.
View Article and Find Full Text PDFA novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at T<500 degrees C by using the electrochemical catalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.
View Article and Find Full Text PDFSulfur difluoride radicals in their ground state have been produced by a "laser-free" pulsed dc discharge of the SF6Ar gas mixtures in a supersonic molecular beam and detected by mass-selective resonance-enhanced multilphoton ionization (REMPI) spectroscopy in the wavelength range of 408-420 nm. Analyses of the (3+1) REMPI excitation spectrum have enabled identification of three hitherto unknown Rydberg states of this radical. Following the Rydberg state labeling in our previous work [see J.
View Article and Find Full Text PDF