Environ Sci Pollut Res Int
September 2022
Analytical models of solute transport have been widely used to aid the understanding of the physical and chemical processes undergone by substances introduced in a layered aquifer system. However, in previous studies, the advection component of transport was assumed to be one dimensional, while also ignoring the mixing processes that occur in the inlet and the outlet reservoirs. In this study, new sets of models describing those mixing processes are presented.
View Article and Find Full Text PDFMass transport and heat transfer in the single fracture situated in the rock matrix have been investigated extensively in the past decades. Extended from the single fracture, the model of parallel fractures in the rock matrix considers the interactions of multiple fractures and the ambient rock matrix. Heat transfer in such discrete fractures is important to understand thermal energy transfer in the fractured porous media.
View Article and Find Full Text PDFUrinary Stone Disease (USD) or urolithiasis has plagued humans for centuries, and its prevalence has increased over the past few decades. Although USD pathology could vary significantly among individuals, previous qualitative assessments using limited survey data demonstrated that the prevalence of USD might exhibit a distinctive geographical distribution (the so-called "stone belt"), without any knowledge about the characteristics and contribution factors of the belt. Here, we argue that the spatial distribution of USD can at least partly be explained by geogenic and climatic factors, as it correlates with the ambient geo-environmental conditions modulated by lithology/mineralogy, water quality and climate.
View Article and Find Full Text PDFThe nonhorizontal-model-layer (NHML) grid system is more accurate than the horizontal-model-layer grid system to describe groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW-2000. However, the finite-difference scheme of NHML was based on the Dupuit-Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope less than 0.10.
View Article and Find Full Text PDFTo study contaminant transport in groundwater, an essential requirement is robust and accurate estimation of the transport parameters such as dispersion coefficient. The commonly used inverse error function method (IEFM) may cause unacceptable errors in dispersion coefficient estimation using the breakthrough curves (BTCs) data. We prove that the random error in the measured concentrations, which might be described by a normal distribution, would no longer follow the normal distribution after the IEFM transformation.
View Article and Find Full Text PDF