In this Letter, a reconfigurable holographic polymer dispersed liquid crystal (HPDLC) grating template is presented that is obtained by removing the liquid crystal from a formed HPDLC grating. The diffraction characteristics of the HPDLC grating template are studied theoretically and experimentally. Compared to the typical HPDLC grating, the HPDLC grating template possesses higher diffraction efficiency with lower polarization dependency.
View Article and Find Full Text PDFThis paper studies the dynamic response characteristics of the scanning angle in a liquid crystal cladding waveguide beam scanner. Based on liquid crystal dynamic theory, finite element analysis and vectorial refraction law, a dynamic response calculation model of scanning angle is constructed. The simulation results show that the dynamic responses of the scanning angle during the electric field-on and field-off processes are asymmetric, and exhibit "S"-shape and "L"-shape changing trends, respectively.
View Article and Find Full Text PDFTo improve the signal collection efficiency of Optical Coherence Tomography (OCT) for biomedical applications. A novel coaxial optical design was implemented, utilizing a wavefront-division beam splitter in the sample arm with a 45-degree rod mirror. This design allowed for the simultaneous collection of bright and dark field signals.
View Article and Find Full Text PDFWhat we believe to be a novel integrated circular polarization dynamic converter (CPDC) is proposed based on the four-layer mirror symmetry structure. By designing the twisted structure and rearranging the orientation direction of liquid crystal molecules for each layer, the application wavelength range could be broadened. For the viewing angle expansion, negative birefringent films are selected to compensate for the retardation deviation under oblique incidence.
View Article and Find Full Text PDFThis paper proposes an extended prism coupling analysis method to accurately analyze the coupling structure of liquid crystal (LC) cladding waveguide beam steerer. We analyze the effects of LC anisotropy on the coupling of transverse electric (TE) and transverse magnetic (TM) modes and derive the expression of the optical field distribution that perfectly matches the given coupling structure. Based on this method, we present the optimal coupling structure for Gaussian beam.
View Article and Find Full Text PDFA high-speed circular polarization converter (CPC) with a wide field of view (FOV) and wavelength range is designed and fabricated in this paper. The multi-waveplate combined structure is applied to constitute the basic configuration of the CPC for broadening the wavelength range. An electrically suppressed helix ferroelectric liquid crystal (ESHFLC) material with fast response is used as a medium for dynamic polarization operation.
View Article and Find Full Text PDFPolarization imaging techniques have more prominent advantages for imaging in strongly scattered media. Previous de-scattering methods of polarization imaging usually require the priori information of the background region, and rarely consider the effect of non-uniformity of the optical field on image recovery, which not only reduces the processing speed of imaging but also introduces errors in image recovery, especially for moving targets in complex scattering environments. In this paper, we propose a turbid underwater moving image recovery method based on the global estimation of the intensity and the degree of polarization (DOP) of the backscattered light, combined with polarization-relation histogram processing techniques.
View Article and Find Full Text PDFActively tunable or reconfigurable structural colors are highly promising in future development for high resolution imaging and displaying applications. To this end, we demonstrate switchable structural colors covering the entire visible range by integrating aluminum nanoaperture arrays with nematic liquid crystals. The geometrically anisotropic design of the nanoapertures provides strong polarization-dependent coloration.
View Article and Find Full Text PDFFourier ptychography is a promising and flexible imaging technique that can achieve 2D quantitative reconstruction with higher resolution beyond the limitation of the system. Meanwhile, by using different imaging models, the same platform can be applied to achieve 3D refractive index reconstruction. To improve the illumination NA as much as possible while reducing the intensity attenuation problem caused by the LED board used in the traditional FP platform, we apply a hemispherical lighting structure and design a new LED arrangement according to 3D Fourier diffraction theory.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Structural colors based on the macro- or nanostructure formation are ubiquitous in nature, having great prospects in many fields as a result of their environmentally friendly and long-term stable characteristics compared to pigments or dyes. However, the current fabrication techniques still face challenges for the generation of high-quality structural color patterns, especially at the macroscale, in an efficient way. Here, we demonstrate a method that exploits a flexible scanning process of generating macropatterns to convert the contour profiles into well-defined sub-micrometer grating structures with unprecedented vivid structural colors, at high speed and low cost on the graphene oxide film.
View Article and Find Full Text PDFThe combination of a digital micromirror device (DMD) lithography system and a rotatable polarizer provides a simple and convenient method to achieve the pixelated liquid crystal micropolarizer (LCMP) array for polarization imaging. In this paper, two crucial problems restricting the high-precision fabrication of LCMP array are pointed out and settled: the dislocation of LCMP pixels caused by parallelism error of the rotating polarizer and the grid defect caused by the gap between micromirrors. After correction, the maximum deviation of the fabricated LCMP pixels was reduced from 3.
View Article and Find Full Text PDFMetasurface-based structural coloration is a promising enabling technology for advanced optical encryption with a high-security level. Herein, we propose a paradigm of electrically switchable, polarization-sensitive optical encryption based on designed metasurfaces integrated with polymer-dispersed liquid crystals. The metasurfaces consist of anisotropic and isotropic aluminum nanoaperture arrays.
View Article and Find Full Text PDFFourier ptychographic microscopy is a promising imaging technique which can circumvent the space-bandwidth product of the system and achieve a reconstruction result with wide field-of-view (FOV), high-resolution and quantitative phase information. However, traditional iterative-based methods typically require multiple times to get convergence, and due to the wave vector deviation in different areas, the millimeter-level full-FOV cannot be well reconstructed once and typically required to be separated into several portions with sufficient overlaps and reconstructed separately, which makes traditional methods suffer from long reconstruction time for a large-FOV (of the order of minutes) and limits the application in real-time large-FOV monitoring of live sample in vitro. Here we propose a novel deep-learning based method called DFNN which can be used in place of traditional iterative-based methods to increase the quality of single large-FOV reconstruction and reducing the processing time from 167.
View Article and Find Full Text PDFFourier ptychographic microscopy (FPM) is a recently developed computational imaging technique that has high-resolution and wide field-of-view (FOV). FPM bypasses the NA limit of the system by stitching a number of variable-illuminated measured images in Fourier space. On the basis of the wide FOV of the low NA objective, the high-resolution image with a wide FOV can be reconstructed through the phase recovery algorithm.
View Article and Find Full Text PDFSuper-resolution optical fluctuation imaging (SOFI) provides subdiffraction resolution based on the analysis of temporal stochastic intensity fluctuations. However, conventional SOFI imaging relies on the intrinsic blinking properties of fluorescent markers and suffers from severe artifacts and signal losses owing to the unmatched blinking on-time ratio. Herein, we propose active-modulated, random-illumination, super-resolution optical fluctuation imaging that allows the traditional SOFI to overcome the effect of the intrinsic impertinent blinking characteristic of fluorescent markers.
View Article and Find Full Text PDFFourier ptychographic microscopy (FPM) is a recently developed imaging approach aiming at circumventing the limitation of the space-bandwidth product (SBP) and acquiring a complex image with both wide field and high resolution. So far, in many algorithms that have been proposed to solve the FPM reconstruction problem, the pupil function is set to be a fixed value such as the coherent transfer function (CTF) of the system. However, the pupil aberration of the optical components in an FPM imaging system can significantly degrade the quality of the reconstruction results.
View Article and Find Full Text PDFFourier ptychographic microscopy (FPM) is a recently developed computational microscopy approach that produces both wide field-of-view (FOV) and high resolution (HR) intensity and a phase image of the sample. Inspired by the ideas of synthetic aperture and phase retrieval, FPM iteratively stitches multiple low-resolution (LR) images with variable illumination angles in Fourier space to reconstruct an HR complex image. Typically, FPM illuminating the sample with an LED array is approximated as a coherent imaging process, and the coherent transfer function (CTF) is imposed as a support constraint in Fourier space.
View Article and Find Full Text PDFOpen loop liquid crystal adaptive optics (LC AO) has overcome the disadvantage of low energy efficiency after years of research, and its use is very promising in ground-based large aperture telescopes for visible band imaging. However, the low system bandwidth of open loop LC AO still limits its application. In order to solve this problem, we bring the concept of proportional-derivative control (which is widely used in closed loop systems) into open loop LC AO in this paper.
View Article and Find Full Text PDFA compound-eye imaging system based on the phase diffractive microlens array as a compact observation module is proposed. As compared with the refractive microlens in common compound-eye imaging systems, the diffractive microlens is a flat imaging optics featuring high relative aperture, thin component thickness and compatibility with lithography techniques. As an application, a compact fingerprint imaging module was demonstrated using this compound-eye imaging system.
View Article and Find Full Text PDFMicromachines (Basel)
October 2018
This paper presents an approach that is capable of producing a color image using a single composite diffractive optical element (CDOE). In this approach, the imaging function of a DOE and the spectral deflection characteristics of a grating were combined together to obtain a color image at a certain position. The DOE was designed specially to image the red, green, and blue lights at the same distance along an optical axis, and the grating was designed to overlay the images to an off-axis position.
View Article and Find Full Text PDFUnlike conventional approaches that require bulky and expensive pumping equipment, herein, we present a simple method for self-activated microdroplet generation and transport inside a long microchannel. The high gas-pressure in the syringes is used to provide the built-in power of self-priming so that the continuous phase and the dispersed phase are sequentially automated into the generator junction to produce stabilized droplets. The volume ratio between the aqueous and oil phases can be adjusted in a flexible way by accurately controlling the volume of the compressed air in the two syringes, and a novel self-activated micropumping mechanism is introduced to explain this phenomenon.
View Article and Find Full Text PDFThe performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated.
View Article and Find Full Text PDFWe demonstrated flower-like 3D Ag-Au hetero-nanostructures on an indium tin oxide glass (ITO glass) for surface enhanced Raman scattering (SERS) applications. The flower-like 3D Ag nanostructures were obtained through electrodeposition with liquid crystalline soft template which is simple, controllable and cost effective. The flower-like 3D Ag-Au hetero-nanostructures were further fabricated by galvanic replacement reaction of gold (III) chloride trihydrate (HAuCl·3HO) solution and flower-like Ag.
View Article and Find Full Text PDFWe investigate a specific diversity phase for phase diversity (PD) phase retrieval, which possesses higher accuracy than common PD, especially for large-scale and high-frequency wavefront sensing. The commonly used PD algorithm employs the image intensities of the focused plane and one defocused plane to build the error metric. Unlike the commonly used PD, we explore a bisymmetric defocuses diversity phase, which employs the image intensities of two symmetrical defocused planes to build the error metric.
View Article and Find Full Text PDFThere are more than eight large aperture telescopes (larger than eight meters) equipped with adaptive optics system in the world until now. Due to the limitations such as the difficulties of increasing actuator number of deformable mirror, most of them work in the infrared waveband. A novel two-step high-resolution optical imaging approach is proposed by applying phase diversity (PD) technique to the open-loop liquid crystal adaptive optics system (LC AOS) for visible light high-resolution adaptive imaging.
View Article and Find Full Text PDF