Publications by authors named "Quanming Chen"

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Spiral phase contrast imaging alleviates the information load by extracting the geometric features of objects and is one of the most representative branches of instant imaging processing. The self-healing capacity of edge detectors can enhance their robustness to obstacles in practical applications. Here, a self-healing spiral phase contrast imaging scheme is proposed and experimentally demonstrated by a liquid crystal edge detector combining a spiral phase, an axicon phase, and a lens phase.

View Article and Find Full Text PDF

Optical edge detection significantly reduces the image information load and is highly sought after in instant image processing. Robustness to the wavelength and polarization of light as well as mechanical vibration is a key requirement for practical applications. Here, a robust optical edge detector is proposed and demonstrated based on a reflective twisted liquid crystal q-plate.

View Article and Find Full Text PDF

Introduction: Mechanical thrombectomy (MT) using stent retrievers or a direct aspiration first-pass technique has proven to yield better results over intravenous thrombolysis in treating acute ischaemic stroke caused by large vessel occlusion (LVO). However, the treatment of intracranial atherosclerotic stenosis-related LVO remains unclear and has been a critical problem in daily clinical practice, as it can cause a relatively high failure rate for MT. Whether direct angioplasty and/or stenting is clinically feasible and shows advantage in reducing delay to revascularisation with better functional outcome compared with MT with rescue angioplasty and/or stenting remains unclear.

View Article and Find Full Text PDF

Recently discovered reflective Pancharatnam-Berry phase (PB phase) from chiral anisotropic media (e.g., cholesteric liquid crystal, CLC) has aroused great interest in the emerging frontier of planar optics.

View Article and Find Full Text PDF

Rotation-translation conversion is a popular way to achieve power transmission in machinery, but it is rarely selected by nature. One unique case is that of bacteria swimming, which is based on the collective reorganization and rotation of flagella. Here, we mimic such motion using the light-driven evolution of a self-organized periodic arch pattern.

View Article and Find Full Text PDF

To address the accommodation-convergence conflict problem in conventional augmented reality (AR) head-mounted displays, we propose a compact multi-plane display design based on cholesteric liquid crystal (CLC) reflective films and a polarization switch. Because of the polarization selectivity of CLC films, circularly-polarized light with different handedness is reflected by different CLC films, resulting in different optical path lengths and different image depths by the lens. A flicker-free dual-plane prototype with correct focus cues and relatively low operating voltage has been implemented.

View Article and Find Full Text PDF

We report a non-interferometric single-exposure technique for fabricating Pancharatnam-Berry (PB) devices with arbitrary wavefronts, via photo-patterning an azo-dye doped LC with a two-dimensional linear polarization field, whose local polarization direction can be controlled by a spatial light modulator (SLM) on the pixel level. Upon one exposure, different local LC orientations are generated simultaneously. The non-interferometric approach is insensitive to environmental disturbance, and moreover, the dynamic phase mask on the SLM can be conveniently reconfigured by a computer.

View Article and Find Full Text PDF

In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed.

View Article and Find Full Text PDF