Publications by authors named "Quanlong Feng"

Soil organic carbon (SOC) is vital for the global carbon cycle and environmentally sustainable development. Meanwhile, the fast, convenient remote sensing technology has become one of the notable means to monitor SOC content. Nowadays, limitations are found in the inversion of SOC content with high-precision and complex spatial relationships based on scarce ground sample points.

View Article and Find Full Text PDF

We provide a remote sensing derived dataset for large-scale ground-mounted photovoltaic (PV) power stations in China of 2020, which has high spatial resolution of 10 meters. The dataset is based on the Google Earth Engine (GEE) cloud computing platform via random forest classifier and active learning strategy. Specifically, ground samples are carefully collected across China via both field survey and visual interpretation.

View Article and Find Full Text PDF

Background: The best-fitting circle drawn by computed tomography (CT) reconstruction of the en face view of the glenoid bone to measure the bone defect is widely used in clinical application. However, there are still some limitations in practical application, which can prevent the achievement of accurate measurements. This study aimed to accurately and automatically segment the glenoid from CT scans based on a 2-stage deep learning model and to quantitatively measure the glenoid bone defect.

View Article and Find Full Text PDF

During clinical practice, radiologists often use attributes, e.g., morphological and appearance characteristics of a lesion, to aid disease diagnosis.

View Article and Find Full Text PDF